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Abstract

This document describes the complete specification of the APIs and Protocols for
the MAFTIA Middleware. The architecture of the middleware subsystem has been de-
scribed in a previous document, where the several modules and services were introduced:
Activity Services; Communication Services; Network Abstraction; Trusted and Untrusted
Components. The purpose of the present document is to make concrete the functionality
of the middleware components, by defining their application programming interfaces, and
describing the protocols implementing the above-mentioned functionality.
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1 Introduction

This document presents the complete specification of the APIs and protocols for the
MAFTIA middleware. The architecture of the middleware subsystem has been described
in a previous deliverable (D23), where the various system models, modules and services
were introduced. A first specification of the APIs and protocols was given one year ago, in
another deliverable (D24). This document intends to explain all the protocols that have
been produced until now, and to present the external interfaces to the various components
of the architecture. These interfaces can be used by the other partners of the project to
explore the functionality provided by the middleware in the implementation of the other
subsystems of the MAFTIA architecture. The internal interfaces, i.e., the APIs used for
the exchange of data among the protocols of the middleware, is only briefly described
since this interface is being defined as the middleware implementation progresses. In the
next deliverable we will provide a complete prototype of the middleware (D11: Running
prototype of MAFTIA middleware, due to 6 month from now).

Figure 1.1 represents the architecture of a MAFTIA host, in which the dependence
relations between modules are depicted by the orientation of the (“depends-on”) arrows.
The figure also represents the main runtime environments that will support the architec-
ture, and other components in general that might want to call their interfaces, namely the
Appia protocol kernel, the Trusted Timely Computing Base (TTCB), and of course the
Operating System (OS).

This deliverable is organized in two main parts, one that introduces the services
and APIs and another that presents the protocols. Each part is explained using a bottom-
up approach, it starts by describing the runtime environments and then the middleware
modules.

Appia is the protocol kernel that is going to be employed by the MAFTIA mid-
dleware. In terms of protocol design, a protocol kernel provides the tools that allow a
designer to compose stacks of protocols (or modules) according to the needs of the archi-
tecture. In run-time the protocol kernel supports the exchange of data (messages) and
control information between layers and provides a number of auxiliary services such as
timer management and memory management for message buffers.

The TTCB, like the Operating System (OS), is a component that might have its
services called by every other module. Unlike the OS, the TTCB can be a fairly modest and
simple component of the system, with properties well-defined and preserved by construc-
tion. The TTCB exhibits a fail-controlled behavior, i.e., it fails only by crashing, even in
the presence malicious faults, and regardless of the characteristics of the applications using
its services. It can be seen as an assistant for parts of the execution of the protocols and
applications, since it provides a small set of trusted services related to time and security.
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Figure 1.1: Architecture of a MAFTIA Host.

The lowest module of the middleware architecture is the Multipoint Network, MN,
created on top of the physical infrastructure. The MN hides the particulars of the un-
derlying network to which a given site is directly attached, and is as thin as the intrinsic
properties of the latter allow. The main services that it provides are multipoint addressing
and best-effort message delivery, basic secure channels and message envelopes. Its API is
composed by the standard interfaces to well-known protocols, such as TCP/IP and SNMP,
that might be used by the modules above it.

Communication Support, CS, is the core module related to data interchange among
sites. It depends on the information given by the Site Membership, SM, module about the
composition of the groups, and on the MN to access the network. The CS module imple-
ments secure group communication primitives, such as Byzantine agreement or message
multicast, and other core services. The group communication primitives are provided with
several reliability and ordering guarantees, such as causal or atomic, and can be defined in
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terms of several programming models: asynchronous, timed with support from the TTCB,
or asynchronous with assistance from the TTCB. At the current time we provide two CS
protocol stacks, one that assumes a fully asynchronous network and static, open groups;
and another that considers an asynchronous payload network and support from the TTCB,
with dynamic open groups.

The Activity Support module, AS, implements building blocks that assist the de-
velopment of specific classes of applications, such as distributed transactional support and
replication management. Its main purpose is to offer top-level interfaces that will make the
access to CS protocols and interfaces easier, and provide functionality that will simplify
the construction of those applications. This deliverable describes the services, APIs and
protocols of a transactional support service (TSS). This service provides multiparty, single
level transaction support. The TSS is intended to be used as a building block for intrusion
tolerant applications and other AS modules. The architecture of the TSS is derived by
applying the general MAFTIA architectural principle of distributing trust to a standard
transaction processing architecture. Effectively, the servers implementing the transaction
service and optionally the resource managers and resources are replicated.

The Site Failure Detector module, SF, as its name indicates, determines which sites
have failed. This module can use the services of the TTCB to offer a reliable failure
detection, since the TTCB is synchronous and secure. If a TTCB is not present, the
SF module might not provide completely correct information because it depends on the
conditions of the network, which has uncertain synchrony and might be prone to attacks.
Site Membership, SM, keeps and updates the information related to the set of sites that are
registered and in the current view (currently trusted sites). It depends on the information
given by the SF module. The Participant Failure Detector module, PF, assesses the liveness
and correctness of all local participants, based on information provided by the operating
system.

3



2 Runtime Support Services and APIs

2.1 Appia

This section describes the API of Appia. Appia is a layered communication frame-
work implemented in Java, providing extended configuration and programming possibil-
ities. The conceptual model behind Appia is described in several papers [47, 46]. More
information about the framework and the latest updates can be retrieved at the Appia
website [1].

Appia is a general purpose framework that is being used in several research projects.
Although Appia is not a fully developed component solely for MAFTIA, we decided to
include this section in the deliverable mainly for two reasons: first, for completeness, since
most of the development of MAFTIA middleware will be done within this framework, it is
important to understand the capabilities and support provided by Appia; second, because
MAFTIA influenced the development of Appia. When the MAFTIA project endorsed
Appia, it was still in an early stage of design, and measures were taken in order that an
adequate effort was put into it so that the deadlines demanded by MAFTIA were met,
and more importantly, that its structure and API would meet the needs of the MAFTIA
project.

This section presents the class signatures and details their usage and function.

2.1.1 Overview

Networked inter-process communication requires that several distinguishable prop-
erties be combined in order to provide the derived service.

Some networking standards, detailing the provided properties, have been developed
and are now widely used. This is the case of the Internet Protocols such as IP, TCP,
UDP [55, 56, 53] and the OSI model [75]. Most of them assume a layering model, having
each protocol piled over another. Each protocol relies on the documented properties of the
protocols below to provide his service to the layers above. Transmission Control Protocol
(TCP), for instance, relies on routing capabilities of IP to ensure that the sent packets
will be delivered to the correct destination. As IP does not ensure FIFO ordering, TCP
provides this property.

Each combination of layers (protocols) on the stack provide a different set of prop-
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erties1 and can be considered as the service provided by the stack. The properties resulting
from each combination and the protocols used in the stack are used interchangeably in this
document and referred as the Quality of Service (QoS).

Appia is a layered communication support framework. Its mission is to define a
standard interface to be respected by all layers and facilitate communication among them.
Appia is protocol independent. That is, the framework layers any protocol as long as it
respects the predefined interface, making no provisions to validate the final composition
result.2

These services can be found in several previous works. For a comparison see [47].

2.1.2 Appia Concepts

This section briefly describes the concepts and terminology used in Appia.

Static and dynamic concepts Appia presents a clear distinction between the declara-
tion of something (either a protocol or a stack) and its implementation.

A Layer is defined by the properties a protocol requires and those it will provide.
A Session is a running instance of a protocol. A Session is always created on behalf of a
layer and its state is independent from other instances.

A QoS is a static description of an ordered set of protocols. A Channel is a
dynamic instantiation of a QoS. Protocol instances (sessions) communicate using channel
infrastructure.

All these concepts are illustrated in Figure 2.1 and Table 2.1.

As they are static, layers do not exchange information between themselves. Instead,
they declare the communication interface of their dynamic instantiations, the sessions.
Communication between sessions and with the channel is made using Events. Appia
provides a predefined set of events, each with a different meaning but programmers are
encouraged to extend this set to detail protocol specific occurrences. Starting from the
session which generated it, events flow through the stack in a predefined direction. The
information contained in any particular event extends a basic set of fields that all events
must contain.

1Different orderings of protocols can also provide different sets of properties.
2In fact, Appia provides a limited form of stack validation.
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Reusability Reusability in Appia is based on inheritance. Since most of the protocols
depend (at least weakly) on the service provided by others, upgrading some may produce
incompatibilities. Appia uses inheritance to make the upgrades transparent. When a new
version of a protocol is released, it is expected that the generated events will have richer
information than the previous version. Assuming that none of the previously provided
information format is changed, protocols may simply create new events extending previous
ones. This way, protocol backward compatibility is assured.

Optimization Inheritance is also used to improve protocol performance. Timer events,
for instance, are generated by protocols (as requests) and handled by the channel. Any
session is free to extend the standard timer events, allowing it to add information that
otherwise would have to be kept in the session state. A reliable delivery protocol for
instance may include the message to be retransmitted in the timeout request event. When
the timeout occurs, the session simply peeks the message from the event and resends it.

Event processing time is reduced by preventing protocol instances from handling
unwanted events. Each protocol registers his interest in receiving event classes. Events of
classes not declared are not delivered to the corresponding sessions.

Channel

gr
ou

ps

gr
ou

ps

Session Layer

QoS

created on behalf of

created on behalf of

Protocol Set

Protocol

Dynamic Static

Figure 2.1: Relation between sessions, layers, channels and QoS’s.

Protocol definition Each protocol is defined by two different classes: one extending the
Layer class and the other extending the Session class. By convention, the former is usually
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Concept Behavior # Description

Layer Static 1 The static description of a protocol. The properties it
requires and provides.

Session Dynamic n Execution instance of a protocol. Keeps the protocol
state and provides the properties described in the cor-
responding layer.

QoS Static 1 An ordered set of layers. Describes the properties that
a running instance of that combination of protocols
would have.

Channel Dynamic n An ordered set of sessions, modeled by one QoS. The
entity providing the set of properties specified in the
QoS.

# The expected number of instances per protocol/protocol set in an Appia process.

Table 2.1: Relation between static and dynamic concepts in Appia

named ProtocolLayer and the later ProtocolSession having Protocol to be the name of the
protocol.

The ProtocolLayer class is the one participating in QoS definitions. Its purpose is
to export the event sets and to create instances of the ProtocolSession class.

The ProtocolSession class is the one participating in channels and executing protocol
instances. It has two main goals: to cooperate in channel definitions and to handle and
generate events, providing the properties expected from the protocol.

Relation between sessions and channels In Appia, a session (i.e. a running instance
of a protocol) may participate in several channels simultaneously even if they have different
QoS’s. This means that a single protocol instance can participate in multiple protocol
combinations.

This is one of the innovative aspects of Appia and offers a new perspective on the
way different kinds of data are related. For instance, by having only one single FIFO
session on two channels, one with an appropriate QoS for video transmission and another
for audio, the receiver imposes the sending order of messages across the two media without
any additional programming effort.

Whether sessions deal transparently with multiple channels or not is implementation
and protocol dependent. On event reception, sessions are free to query the event’s channel.
Events can be forwarded without sessions knowing the channel being used.

7



Implementation classes There are eleven classes that are relevant for layer and ap-
plication implementation in Appia: QoS, Channel, ChannelCursor, Layer, Session, Event,
Message, MsgWalk, MsgBuffer, Direction and Appia. Figures 2.2, 2.3 and 2.4 present the
UML models of the framework. The remaining classes of Appia are not presented as they
do not provide relevant features to protocol and application development.

Notation Methods and classes are presented using usual object-oriented languages no-
tation.

Classes always have an upper-case first character while methods are identified by a
lower-case first character. The remaining characters will be lower case except when a new
word is started.

The existence of optional arguments is signaled by the presentation of different
methods with the same name. This document presents only the interface relevant for the
user. By default, presented methods and attributes have no access restritions and are
qualified as public.

2.1.3 API Description by Class

This section describes the interface of the classes that are relevant for protocol and
application development. Class descriptions are ordered from the more generic to the more
specific concept, attempting to avoid forward references.

Each class interface is introduced by a description of the role the class plays in the
framework and how it is normally used by protocol and application programmers.

Class QoS A Quality Of Service is a set of properties, each independently provided by
one protocol.

QoS missions are to glue protocols (presented as layers), attempt to validate the
resulting composition and define the interaction rules between the protocols. At QoS
definition time, layers declare the events their sessions are interested to receive. Using this
knowledge, QoS builds for each event class an “event path”, including only the layers that
are interested in receiving it. The information extracted can then be used to efficiently
create channels.

Class QoS defines the Qualities of Services that will be available to the application.
From the programmer’s point of view, a QoS instance is simply an array of layers.

8
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Figure 2.2: Appia main UML.

9



C
ha

nn
el

In
it

C
ha

nn
el

C
lo

se

E
ve

nt

ro
ut

e 
: S

es
si

on
[]

sc
he

du
le

r 
: E

ve
nt

S
ch

ed
ul

er

E
ve

nt
 (

ch
an

ne
l :

 C
ha

nn
el

, d
ir 

: D
ire

ct
io

n,
 s

ou
rc

e 
: S

es
si

on
)

E
ve

nt
 (

)
se

tD
ire

ct
io

n 
(d

ire
ct

io
n 

: D
ire

ct
io

n)
 : 

vo
id

ge
tD

ire
ct

io
n 

()
 : 

D
ire

ct
io

n
se

tC
ha

nn
el

 (
ch

an
ne

l :
 C

ha
nn

el
) 

: v
oi

d
ge

tC
ha

nn
el

 (
) 

: C
ha

nn
el

se
tS

ou
rc

e 
(s

ou
rc

e 
: S

es
si

on
) 

: v
oi

d
ge

tS
ou

rc
e 

()
 : 

S
es

si
on

is
A

cc
ep

te
d 

()
 : 

bo
ol

ea
n

po
pS

es
si

on
 (

) 
: S

es
si

on
go

 (
) 

: v
oi

d
in

it 
()

 : 
vo

id
du

p 
()

 : 
E

ve
nt

de
bu

g 
(o

ut
pu

t :
 O

ut
pu

t)
 : 

vo
id

cl
on

eE
ve

nt
 (

) 
: E

ve
nt

as
yn

cG
o 

()
 : 

vo
id

(f
ro

m
 L

og
ic

al
 V

ie
w

)

T
im

er

w
he

n 
: T

im
e

T
im

er
 (

tim
er

ID
 : 

S
tr

in
g,

 w
he

n 
: T

im
e,

 c
ha

nn
el

 : 
C

ha
nn

el
, d

ir 
: D

ire
ct

io
n,

 s
ou

rc
e 

: S
es

si
on

, q
ua

lif
ie

r 
: E

ve
nt

Q
ua

lif
ie

r)
se

tT
im

eo
ut

 (
w

he
n 

: T
im

e)
 : 

vo
id

ge
tT

im
eo

ut
 (

) 
: T

im
e

P
er

io
di

cT
im

er

pe
rio

d 
: T

im
e

P
er

io
di

cT
im

er
 (

pe
rio

di
cI

D
 : 

S
tr

in
g,

 p
er

io
d 

: T
im

e,
 c

ha
nn

el
 : 

C
ha

nn
el

, d
ir 

: D
ire

ct
io

n,
 s

ou
rc

e 
: S

es
si

on
, q

ua
lif

ie
r 

: E
ve

nt
Q

ua
lif

ie
r)

se
tP

er
io

d 
(p

er
io

d 
: T

im
e)

 : 
vo

id
ge

tP
er

io
d 

()
 : 

T
im

e

1 0.
.* M
sg

W
al

k

ne
xt

 (
m

bu
f :

 M
sg

B
uf

fe
r)

 : 
vo

id

1

0.
.*

S
en

da
bl

eE
ve

nt

de
st

 : 
O

bj
ec

t
so

ur
ce

 : 
O

bj
ec

t

ge
tM

es
sa

ge
 (

) 
: M

es
sa

ge
se

tM
es

sa
ge

 (
m

 : 
M

es
sa

ge
) 

: v
oi

d

C
ha

nn
el

E
ve

nt

qu
al

ifi
er

 : 
E

ve
nt

Q
ua

lif
ie

r

se
tQ

ua
lif

ie
r 

(q
ua

lif
ie

r 
: E

ve
nt

Q
ua

lif
ie

r)
 : 

vo
id

ge
tQ

ua
lif

ie
r 

()
 : 

E
ve

nt
Q

ua
lif

ie
r

E
ve

nt
Q

ua
lif

ie
r

$ 
O

N
 : 

in
t =

 0
$ 

O
F

F
 : 

in
t =

 1
$ 

N
O

T
IF

Y
 : 

in
t =

 2
qu

al
ifi

er
 : 

in
t

E
ve

nt
Q

ua
lif

ie
r 

(q
ua

lif
ie

r 
: i

nt
)

E
ve

nt
Q

ua
lif

ie
r 

()
se

t (
qu

al
ifi

er
 : 

in
t)

 : 
vo

id
is

O
n 

()
 : 

bo
ol

ea
n

is
O

ff 
()

 : 
bo

ol
ea

n
is

N
ot

ify
 (

) 
: b

oo
le

an

D
eb

ug

ou
tp

ut
 : 

O
ut

pu
t

D
eb

ug
 (

ch
an

ne
l :

 C
ha

nn
el

, d
ir 

: D
ire

ct
io

n,
 s

ou
rc

e 
: S

es
si

on
, o

ut
pu

t :
 O

ut
pu

t)
ge

tO
ut

pu
t (

) 
: O

ut
pu

t

E
ch

oE
ve

nt

ev
en

t :
 E

ve
nt

E
ch

oE
ve

nt
 (

ev
en

t :
 E

ve
nt

, c
ha

nn
el

 : 
C

ha
nn

el
, d

ir 
: D

ire
ct

io
n,

 s
ou

rc
e 

: S
es

si
on

)
ge

tE
ve

nt
 (

) 
: E

ve
nt

M
sg

B
uf

fe
r

da
ta

 : 
by

te
[]

of
f :

 in
t

le
n 

: i
nt

M
sg

B
uf

fe
r 

()
M

sg
B

uf
fe

r 
(d

at
a 

: b
yt

e[
], 

of
f :

 in
t, 

le
n 

: i
nt

)

M
es

sa
ge

M
es

sa
ge

 (
)

se
tB

yt
eA

rr
ay

 (
da

ta
 : 

by
te

[],
 o

ffs
et

 : 
in

t, 
le

ng
th

 : 
in

t)
 : 

vo
id

le
ng

th
 (

) 
: i

nt
pe

ek
 (

m
bu

f :
 M

sg
B

uf
fe

r)
 : 

vo
id

ge
tM

sg
W

al
k 

()
 : 

M
sg

W
al

k
di

sc
ar

d 
(le

ng
th

 : 
in

t)
 : 

vo
id

po
p 

(m
bu

f :
 M

sg
B

uf
fe

r)
 : 

vo
id

pu
sh

 (
m

bu
f :

 M
sg

B
uf

fe
r)

 : 
vo

id
fr

ag
 (

m
 : 

M
es

sa
ge

, l
en

gt
h 

: i
nt

) 
: v

oi
d

tr
un

ca
te

 (
ne

w
Le

ng
th

 : 
in

t)
 : 

vo
id

to
B

yt
eA

rr
ay

 (
) 

: b
yt

e[
]

jo
in

 (
)

1 0.
.*w

al
ks

1

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

Figure 2.3: Appia predefined events UML.

10



Figure 2.4: Appia framework exceptions UML.
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One optional argument of the createUnboundChannel method is the EventSched-
uler. Appia configuration options allow programmers to define event scheduling policies
by redefining this class. The default implementation of the EventScheduler class is single
threaded and puts all events in a FIFO queue. The internals of the EventScheduler class
lie outside the scope of this document and can be found elsewhere [45].

class QoS {
QoS(String qosID, Layer[] layers) throws AppiaInvalidQoS;
Channel createUnboundChannel(String channelID, EventScheduler

eventScheduler);
Channel createUnboundChannel(String channelID);
Layer[] getLayers();

}

Class Channel Channels are instantiations of QoS’s. Channels glue sessions the same
way QoS’s glue layers. A Channel is created on behalf of a QoS type. When a channel
is created, it inherits the knowledge captured from the layers in that QoS, improving
performance.

On channel creation, event paths are exported from the QoS. The channel maps the
layers on the QoS event paths into the bound session to route events.

Channels also provide the background run-time environment for session execution.
They are responsible, for instance, for providing timers. The ChannelEvent sub-class of
events is dedicated to these operations.

Channel definition Upon creation, a channel is as an array of “typed empty
slots”. Each of these slots must be filled with a session of the layer specified in the QoS
for that position. Sessions can be bound to the slots explicitly (by the user) or implicitly
by other sessions (automatic binding). By default, new sessions will be bound to the
remaining slots.

Using explicit binding it is possible to associate specific sessions to specific channels.
These sessions may either be already in use by other channels or may be intentionally
created for the new channel. Explicit binding enables the user to have fine control over
the channel configuration.

Using automatic binding it is possible to delegate to already bound sessions the
task of specifying the remaining sessions for the channel. Typically, a mixture of explicit
and automatic binding is used.
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Both explicit and automatic binding are performed on a ChannelCursor object, which
can be obtained from the Channel. Explicit binding must be performed prior to calling the
start method of the channel. One of the tasks of this method is to ensure that every slot is
fulfilled with a valid object. The first step performed by start is to invite sessions explicitly
bounded to perform automatic binding by calling their boundSessions method. For those
slots not explicitly or automatically bounded, the start method requests the creation of a
new session from the corresponding layer.

Channel initialization and termination A channel is instructed to start and
stop by its methods start and end. Besides the operations concerning session instantiation
performed by start, both methods introduce an event in the channel. The Start event
is supposed to be the first to flow in a channel. Protocols should be aware that events
created in response to handling a Start event must be inserted after invoking the go method
on the Start event. Although this requirement is not mandatory and does not produce
inconsistencies in Appia, other protocols may rely on this property.

The end method introduces a Stop event in the channel. Sessions receiving the Stop
event may not introduce more events in the channel but must be prepared to receive others.
Received events may be propagated.

A stopped channel may latter be restarted by again calling the start method. How-
ever, for temporary suspensions, protocols should consider using EchoEvents to obtain the
same feature.

class Channel {
String getChannelID();
QoS getQoS();
boolean equalQoS(Channel channel);
void start();
void end();
ChannelCursor getCursor();

}

Class ChannelCursor Channel cursors are helpers for channel session specification.
The class provides a set of methods for iterating over the channel stack, retrieving references
to already defined sessions and setting sessions for the yet empty slots. Methods of this
class raise AppiaCursorException exceptions when a invalid operation is done.

Initially, the cursor is not positioned over any position on the channel. The initial
position must be defined by either the top or bottom methods. Scrolling below the bot-
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tommost position of the channel or above the uppermost will also set the cursor to the not
positioned state.

class ChannelCursor {
void top();
void bottom();
void jumpTo(int position) throws AppiaCursorException;
void down() throws AppiaCursorException;
void up() throws AppiaCursorException;
void jump(int offset) throws AppiaCursorException;
boolean isPositioned();
Session getSession() throws AppiaCursorException;
void setSession(Session session) throws AppiaCursorException;
Layer getLayer() throws AppiaCursorException;

}

Class Layer Layers are the static representatives of micro-protocols. They describe the
behavior of micro-protocols. Layers are used in QoS definitions to reserve a specific position
for a session implementing the protocol and to declare the needed, accepted and generated
events, respectively, via the evRequire, evAccept and evProvide attributes.

Layers are responsible for instantiating sessions (in response to calls to the method
createSession) and are notified by the channel whenever one session is dismissed by a channel
(by calls to the method channelDispose).

class Layer {
Class[] evProvide;
Class[] evRequire;
Class[] evAccept;
Session createSession();
void channelDispose(Session session, Channel channel);

}

Class Session A session is the dynamic part of a micro-protocol. Sessions maintain
the state of a micro-protocol instance and provide the code necessary for its execution.
Channels provide the connection between the different sessions of a stack. A session keeps a
relation of “one-to-many” with channels: one single session can be part of multiple channels.
A session is defined as channel-aware if its algorithm recognizes and acts differently upon
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reception of events flowing from different channels. Many of the protocols that can be
found in existing stacks are channel-unaware. When a channel is being defined, sessions
already bound to the channel may be invited to bind other sessions. The invitation is made
by a call to the boundSessions method.

Sessions communicate with their environment by events. Reception of events is
made by the handle method. A session can learn the channel that is delivering an event to
it by querying the channel attribute of the Event.

class Session {
protected Layer layer;
Layer getLayer();
void boundSessions(Channel channel);
void handle(Event event);

}

Class Direction Class Direction is an implementation support class of Appia. It qualifies
an event stating the direction it is flowing. The direction attribute accepts two values UP
and DOWN defined as static constants.

class Direction {
int direction;
static final int UP=1;
static final int DOWN=2;
Direction(int direction);
void invert();

}

Class Event Sessions use events to communicate with the surrounding environment.
This class contains the attributes necessary for the event routing. In Appia, events can be
freely defined by the protocol programmers as along as all descend from the main Event
class. Programmers should be aware that sub-classing should be done as deeply as possible
on the sub-classing tree, improving event sharing and compatibility among different micro-
protocols.

The Event class has three attributes that must be defined prior to the event insertion
in a channel. For each, a pair of set and get methods is defined. The attributes are:

direction Stating the direction of the movement (up or down).
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channel Stating the channel where the event will flow.

source Stating the session that generated the event. This attribute is important to deter-
mine the event route.

The attributes can be defined either by the constructor or by the individual set
methods. When methods are used, the method init must be invoked after all attributes are
defined and prior to the invocation of the go method.

The cloneEvent method uses the Java clone operation of the Object class. Redef-
inition of this method should always start by invoking the same method on the parent
classes.

Concurrency control Appia is not thread-safe in the sense that consistency is
not ensured if protocols insert events in the channel while not owning the Appia main
thread. However, a thread-safe event method, with a particular semantics, is provided.

The asyncGo method should be called only when an event is inserted asynchronously
(i.e. concurrently with the Appia main thread) in the channel. If the direction defined at
the event is UP, asyncGo will place the event at the bottom of the channel. Otherwise,
the event will be placed at the top of the channel. The event will then present the same
behavior as any other, respecting the FIFO order while crossing the channel and only
visiting the sessions of the protocols that declared it in the accepted set. Events inserted
in a channel using the asyncGo method should not be initialized either by the constructor
or by the init method.

Asynchronous events are particular useful for protocols using their own thread to
execute, like those receiving information from outside the channel. Examples of such pro-
tocols are those listening to a socket to retrieve incoming messages. When an incoming
network message arrives, the session can use these events to request the synchronous de-
livery of the event through the Appia main thread.

Note: Protocol programmers should be aware that the asynchronous insertion of
events in the channel must be handled with particular care since it subverts the usual event
behavior. Events inserted assynchronously travel directly to the end of the stack, prior to
being inserted. This does not respect possible causal dependencies between events. Fur-
thermore, programmers should be aware that the use of asynchronous events may subvert
the ordering of the stack. Consider the example of the previous paragraph. If some proto-
col is below the protocol receiving messages from the network, it should not be presented
with incoming network messages, that are expected to be sent toward the top of the stack.
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This problem may occur if the event type used for the asynchronous event is the one used
for sending the message to the stack.

class Event {
Event(Channel channel,Direction dir,Session source) throws

AppiaEventException;
Event();
void init() throws AppiaEventException;
void setDirection(Direction dir);
Direction getDirection();
void setChannel(Channel channel);
Channel getChannel();
void setSource(Session source);
Session getSource();
void go() throws AppiaEventException;
void asyncGo(Channel c, Direction d) throws AppiaEventException;
Event cloneEvent() throws CloneNotSupportedException;

}

Class EventQualifier The event qualifier class differentiates channel events with one of
three types: ON, OFF and NOTIFY. The precise interpretation of these values will depend
on the qualified event type. However, a common usage pattern is defined:

ON is used for setting requests or starting a mode or operation. OFF is intended for
abortion of requests or mode cancellation. NOTIFY is used for notifications of occurrences.

class EventQualifier {
static final int ON=0;
static final int OFF=1;
static final int NOTIFY=2;
EventQualifier(int qualifier) throws AppiaEventException;
EventQualifier();
void set(int qualifier) throws AppiaEventException;
boolean isSet();
boolean isCancel();
boolean isNotify();

}
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Class ChannelEvent The ChannelEvent class is the topmost class grouping all channel
related events. That is, all events provided by the channel or containing requests for
services provided by the channel. This class, descendant of the main Event class, includes
the attribute qualifier of type EventQualifier, allowing the channel to determine the type
of operation to be performed. Instances of the ChannelEvent class are never created. Its
subclasses are used to detail the requested or provided operation.

class ChannelEvent extends Event {
void setQualifier(EventQualifier qualifier);
EventQualifier getQualifier();

}

Class EchoEvent EchoEvent events are event carriers. When a EchoEvent reaches one
of the sides of the channel, the event passed to the constructor is extracted and inserted in
the channel in the opposite direction. No copies are realized: the inserted object instance
is the same that was given to the EchoEvent.

EchoEvents allow protocols, for example, to perform composition introspection, like
learning the available maximum PDU size, or to perform requests to other protocols like
temporarily suspending the channel activity.

The carried event will be initialized prior to being inserted in the channel. The
main Event class attributes will be set as if the event has been launched by the channel.
The protocol launching this event should declare itself as the provider of the event.

class EchoEvent extends ChannelEvent {
EchoEvent(Event event, Channel channel, Direction dir, Session source);
Event getEvent();

}

Classes Timer and PeriodicTimer Appia offers periodic and aperiodic timer notifi-
cation services. To request a aperiodic timer, sessions should send a Timer event to the
channel. The direction the event flows and the EventQualifier attribute of the event dis-
tinguish requests from notifications. Table 2.2 presents the expected combinations. The
attributes declared by a Timer extend those available in the ChannelEvent with a String and
the time in milliseconds that the notification should occur. When issuing a timer request,
the EventQualifier attribute must be set to ON.

Programmers are encouraged to extend the basic Timer class. This will impact
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Operation Direction Qualifier

Request DOWN ON
Cancellation DOWN OFF
Notification UP NOTIFY

Table 2.2: Expected combinations of Directions and Qualifiers on Timers operations in an
Appia execution

performance at two different levels. If the event type declared in the provided and accepted
events for the protocol matches the newly defined event type, notifications requested by
other protocols will not consume wasteful resources of this protocol. On the other hand, the
new class may encompass any information required by the protocol to handle the timeout.
This improves protocol execution time. When the timeout is delivered to the application,
the same object instance is delivered to the protocol. The qualifier attribute will be set to
NOTIFY and the direction attribute will have a value inverse to the one defined at timer
request.

Cancellation of a timer is requested by the protocol issuing a new timer event with
the same timer ID and an OFF qualifier. Note that event cancellation can not be ensured by
Appia: the notification event may already be inserted in the channel when the cancellation
reaches the bottom of the channel.

class Timer extends ChannelEvent {
Timer(String timerID, long when, Channel channel, Direction dir,

Session source, EventQualifier qualifier) throws AppiaException;
void setTimeout(long when);
long getTimeout();

}

Periodic timers differ from aperiodic timers by accepting a time interval instead of
an absolute local clock time. The semantics associated with PeriodicTimer events is that
a notification is due every “period” milliseconds. Appia only ensures that no more events
will be raised than periods expire.

The object delivered upon timer expiration will be a copy of the original object. The
copy is performed using the cloneEvent method. Specialization can also be used to redefine
this method in order to provide a different semantics from that initially defined which is to
perform a deep copy of all attributes except the timerID (which has its reference copied).
If redefined, cloneEvent should start by calling its parent cloneEvent method. After issuing
a request to cancel a periodic timer, a undefined number of notifications, those already
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inserted in the channel, can be received.

class PeriodicTimer extends ChannelEvent {
PeriodicTimer(String timerID, long period, Channel channel, Direction

dir, Session source, EventQualifier qualifier) throws AppiaException;
void setPeriod(long period);
Time getPeriod();

}

Note: Appia provides weak time delivery guarantees for notification as this may
compromise the event FIFO ordering within the channel. The only guarantee provided is
that notifications will be raised by the timer manager after the requested timeout period
has expired.

Class SendableEvent SendableEvents are one of the branches of the event tree defined
by Appia. The semantics expected to be applied by protocols regarding SendableEvents is
that those are the events to be sent to the network. Non SendableEvents are supposed to
be local to the channel that created them.

SendableEvents extend the basic event class with three attributes: source, dest and
message. These attributes are of type java.lang.Object. Their instantiation type is sup-
posed to be agreed by the protocols composing the channel and can even change while
the event crosses the stack. It is expected that most of the layers use them transparently
relying only in equality operations. It is therefore advised that value based comparison
operations should be defined for the chosen class.

When retrieving SendableEvents (or any of its subclasses) from the network, pro-
tocols are expected to satisfy at least the following conditions on the event inserted in the
receiving endpoint:

• All attributes of the Event class should be correctly filled; The creator of the event is
the session that retrieved the event from the network and will insert it in the channel;

• Source and dest attributes are equal to the ones received by the session that sent the
event to the network;

• The message attribute has the same sequence of bytes received by the session that
sent the event to the network;

• The event type should be the same;
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Note that besides the event type, no special requirements are imposed for sending
subclasses of SendableEvents. In particular, attributes not inherited from SendableEvent
are not expected to be passed to the remote endpoint. This is the behavior of the current
protocols that interface the network, namely UDPSimple, TCPSimple and TCPComplete.

Messages are set and retrieved by two specific operators. Class Message is defined
later in this document.

class SendableEvent extends Event {
public Object dest;
public Object source;
SendableEvent();
SendableEvent(Channel channel, Direction dir, Session source) throws

AppiaEventException;
SendableEvent(Message msg);
SendableEvent(Channel channel, Direction dir, Session source, Message

msg) throws AppiaEventException;
Message getMessage();
void setMessage(Message m);

}

Class Message The class Message provides an encapsulation of an array of bytes with
methods providing efficient operations for adding and removing headers and trailers. The
class was conceived as the principal method for inter-channel communication.3 Message
provides an interface for sessions to push and pop headers of byte arrays. Message interface
is mainly imported from the x-Kernel [49]. The use of message was devised assuming that
the layer responsible for sending messages to the network has weak serialization capabilities.
Although this is not the case in some programming languages (for instance, Java), using
this facility may raise some additional problems:

Over serialization Java default serialization procedures places the object and all its ref-
erences in a stream. In Appia, an event contains references to the channel he is
running and the event scheduler being used which in turn contain references for
all sessions and for all events currently on the channel. Serializing an event in a
straightforward way will transfer a huge amount of irrelevant information.

Language independence Java serializes objects in a language specific byte array. Com-
patibility between channels coded in different languages would be strongly compro-

3Inter-channel communication is defined as the means by which channels on different processes exchange
information. This is the opposite of intra-channel communication, ideally performed by event attributes.
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mised.

The class has only an empty constructor. To initialize a message instance with an
array of bytes, one should call setByteArray, specifying the first position in the source array
and the number of bytes to be copied. Most of the remaining methods take a MsgBuffer
as an argument.4 All push, peek and pop operations (which respectively add, query and
extract an header) are called with the len attribute of MsgBuffer defined. The remaining
values are ignored and overlaped by the method execution. When the call returns, the off
attribute points to the first position in the data buffer where the header is stored or can
be retrieved.

The sequence of actions performed to push an header is:

1. Prepare a MsgBuffer object with the lenght of the header;

2. Invoke the push method;

3. Copy the header to the data array, starting at the position indicated by offset;5

Popping an header requires the same sequence of actions to be performed, retrieving
the data in step 3.

Note: The byte array presented to the protocol will tipically be larger than the
required lenght. Most of the time, the remaining positions will have headers of other pro-
tocols in the channel. Appia makes no provisions to ensure that protocols act accordingly
to this specification.

Iterating over an entire message (for checksumming or encryption) is made with the
MsgWalk class.

4The goal of the MsgBuffer is to avoid memory copies. This class is described later in this document.
5The only restriction is that the header must be defined prior to calling the go method on the event

owning the message, so, to avoid memory copies, the header can be constructed directly in the buffer.
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class Message {
Message();
void setByteArray(byte[] data, int offset, int length);
int length();
void peek(MsgBuffer mbuf);
void discard(int length);
void push(MsgBuffer mbuf);
void pop(MsgBuffer mbuf);
void truncate(int newLength);
void frag(Message m,int length);
void join(Message m);
MsgWalk getMsgWalk();
byte[] toByteArray();

}

Class MsgBuffer The MsgBuffer class is used as an helper class to operations over
messages. The goal of this class is to improve performance by avoiding message copies.

The MsgBuffer class is used to pass arguments to and receive arguments from meth-
ods of the Message class. The fields are used with the following meaning:

data An array of bytes retrieved from or to be included in the message;

off The first position in the array data containing information relevant to the operation.
Respecting the usual array representation, the first position of an array has offset 0;

len The number of bytes of the array data relevant to the operation;

Array data positions not between off and off+len-1 are reserved and can not be
used.

Instances of this class always have the same usage pattern: the user fills the len
attribute of one instance and invokes the method passing the instance as an argument.
When the method returns, the data, off and len attributes will be appropriately filled. In
peek, pop and next (from the MsgWalk class) the array contains the data retrieved from the
message. In push the array contains the space to be filled with the headers by the session.
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class MsgBuffer {
byte[] data;
int off;
int len;
MsgBuffer();
MsgBuffer(byte[] data, int off, int len);

}

Class MsgWalk MsgWalk objects are iterators over messages. This class is intended to
be used by protocols operating on the entire message buffer such has checksum or cipher
protocols. The array returned by the next method can be used for reading and writing but
no data can be appended or deleted from the message.

class MsgWalk {
void next(MsgBuffer mbuf)

}

Objects Message As an extension to the default behavior, Appia provides the Ob-
jectsMessage class that enriches Message with the methods to push and pop serializable
objects. Since ObjectsMessage extends Message, the interface is transparent to protocols
using the parent class. One ObjectsMessage object supports the interleaved use of both
types of headers.

Note: For performance reasons, the ObjectsMessage objects keep only a reference
to a pushed object. If the protocol also keeps a reference to the object, it will be able to
change it. However, it is not possible to know if the object has already been serialized, in
which case, changes would not affect the sent message.

2.2 Trusted Timely Computing Base

The Trusted Timely Computing Base (TTCB) was defined in MAFTIA deliverables
D1 and D23 [69, 71]. The implementation of a COTS-based prototype of the TTCB was
described in [27, 26]. This section defines the TTCB services and their interface. We
consider that the communication between entities and the TTCB is done with function
calls, i.e., the TTCB API is simply a set of functions. This is generic enough and does
not put special constraints on the TTCB implementation. At the end of the section we
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describe some additional APIs that do not correspond to services: distribution of TTCB
public keys and local TTCB failure detection.

In this section we use the word entity to mean anything that calls the TTCB: a
process, a thread, Appia, or a software module of some kind.

2.2.1 The TTCB Interface

In relation to the TTCB interface, two assumptions are made:

• Malicious entities cannot interfere with the TTCB operation through its interface.

• Any entity can obtain correct information at the TTCB interface.

Therefore, correct entities can correctly use the services of the TTCB, despite the
action of malicious entities. On the other hand, both correct and malicious entities can use
the TTCB, but what a malicious entity does with correct TTCB information is irrelevant
at this stage.

The second assumption above is handled using two approaches: (1) means are given
to the entities to communicate securely with the TTCB; and (2) services are defined in
order to provide useful results despite the lack of security and timeliness of the entities
that use them.

On approach (1), security of entity-TTCB communication can be ensured using
cryptographic techniques. An entity (either in a host with a local TTCB or not) can
decide to secure its communication with the TTCB using a secure channel. This chan-
nel is obtained calling the local authentication service (Section 2.2.3.1) that establishes a
shared key between the entity and the TTCB. That key can subsequently be used to en-
crypt or cryptographically checksum the messages they exchange, thus assuring the desired
combination of communication authenticity, confidentiality and integrity [26].

Approach (2) means that the services themselves have to be defined in order to
be used by insecure and untimely entities. Most services that explore the security of the
TTCB require only secure entity-TTCB communication in order to give useful results.
This is the case of the random number generation service. On the other hand, a multiparty
service like the agreement service provides consistent results to all entities involved, and
the results are obtained deterministically from the inputs. However, from the point of view
of an entity, the correctness of a result may depend on assumptions about majorities of
correct entities.
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Relatively to timeliness, an example can illustrate approach (2). In general, a times-
tamp given by the TTCB is not particulary useful since the delay between its generation
and the moment when the entity reads it is unknown. However, if an entity calls the TTCB
before and after executing an operation, the TTCB can calculate an upper bound on the
time taken to execute it (duration measurement service), and give feedback to the calling
entity on how well it did with regard to time. This mechanism is inspired by the Timely
Computing Base work, and explained with detail in [70].

2.2.2 The TTCB Services

The TTCB services can be roughly divided in security-related services and time-
related services. The security-related services were selected considering the TTCB design
principles [69] and a set of informal criteria:

• The services should be the minimal set that assists in a useful manner the implemen-
tation of building blocks for trusted distributed systems.

• Services should give useful results to entities running in an insecure environment.

• Services should be implementable within the TTCB design principles. E.g., they
should not be too complex to be verifiable.

Security related services
Local authentication For an entity to authenticate the TTCB and estab-

lish a secure channel with it.
Trusted block agreement Achieves agreement on a small, fixed size, data block.
Trusted random numbers Generates trustworthy random numbers.
Time services
Trusted timely execution Executes operations securely and within a certain

interval of time.
Trusted duration measurement Measures the duration of an operation execution.
Trusted timing failure detection Checks if an operation is executed in a time interval.
Trusted absolute timestamping Provides globally meaningful timestamps.

Figure 2.5: TTCB Services

The TTCB services are summarized in Figure 2.5. The implementation of the
security-related services is presented in [27, 26]. The design and implementation of the
time-related services can be found in [70, 19, 20]. The following subsections describe the
TTCB services and their APIs. Figure 2.6 shows the meaning of some common API
parameters.
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Parameter Description
eid an entity identification before the TTCB
elist a list of entities identified by their eids
tag an unique id for an execution of a service (given by the TTCB)
value a value given to or returned by a service
encrypt encryption algorithm

Figure 2.6: Common TTCB API parameters

2.2.3 Security Related Services

2.2.3.1 Local Authentication Service

The purpose of this service is to allow the entity to authenticate and establish
a secure channel with a local TTCB. The need for this service derives from the fact
that, in general, the communication path between the entity and the local TTCB is not
trustworthy. For instance, that communication is probably made through the operating
system that may be corrupted and behave maliciously 6. We assume that the entity–local
TTCB communication can be subject to passive and active attacks [44]. A call to the
TTCB is composed of two messages, a request and a reply, that can be read, modified,
reordered, deleted, and replayed.

The protocol (sequence of function calls) to establish the session key has to be an
authenticated key establishment protocol with local TTCB authentication. The protocol
has to have the following properties [44]:

SK1 Implicit Key Authentication. The entity and the TTCB know that no
other entity has the session key.

SK2 Key Confirmation. Both the entity and the TTCB know that the other
has the session key.

SK3 Authentication. The entity has to authenticate the TTCB.

SK4 Trusted Against Known-Key Attacks. Compromise of past keys does
not allow either (1) a passive adversary to compromise future keys, or (2) impersonation
by an active adversary 7.

6If the entity is a process or thread, a malicious OS is able to attack not only the entity-TTCB
communication but also the entity itself. In these situations, protecting the communication does not add
to the application security although, in practice, it prevents some attacks. However, it makes sense to
protect the communication if the entities are protected from the OS, e.g., if they are inside a SmartCard,
or if they use code protection mechanisms [61, 37].

7A passive adversary “attempts to defeat a cryptographic technique by simply recording data and

27



Every local TTCB has an asymmetric key pair. We assume that correct entities
can obtain a correct copy of the local TTCB public key Ku.

A simple protocol with properties SK1 through SK4 can be implemented with two
messages, i.e., a single function call. Figure 2.7 shows the protocol. A proof sketch that
the protocol verifies SK1 through SK4 can be found in [26].

Action Description
1 P → T 〈Eu(Ket, Xe)〉 The entity sends the TTCB the new key Ket and a challenge Xe,

both encrypted with the local TTCB public key Ku

2 T → P 〈Sr(Xe)〉 TTCB sends the entity the signature of the challenge obtained with
its private key Kr

Figure 2.7: Local Authentication Service protocol

The shared key Ket has to be generated by the entity, not by the TTCB. We would
desire it to be the other way around, but the only key they share initially is the local TTCB
public key, that can be used by the entity to protect information that can be read only by
the local TTCB (that has the corresponding private key) but not the contrary. Ket has to
be generated by the entity in such a way that a malicious OS cannot guess or disclose it.
The generation of a random key requires sources of randomness (timing between key hits
and interrupts, mouse position, etc.), sources that in mainstream computers are controlled
by the OS. This means that when an entity gets allegedly random data from those sources,
it may get either data given or known by a potentially malicious OS. Therefore, there is
the possibility of a malicious OS being able to guess the random data that will be used by
the entity to generate the key, and consequently, the key itself. This problem is hard to
solve, however, a set of practical criteria can help to mitigate it:

• the entity should use as much as possible sources of random data not controlled by
the OS.

• The entity should use as many different sources of random data as possible. Even if
an intruder manages to corrupt the OS, it will probably not be able to corrupt its
code in many different places and in such a synchronized way, so that it may guess
the random number.

• The entity must use a strong mixing function, i.e., a function that produces an output
whose bits are uncorrelated to the input bits [33]. An example is a hash function
such as MD4 or MD5.

thereafter analyzing it (e.g., in key establishment, to determine the key). An active attack involves an
adversary who modifies or injects messages.” [44]
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For similar reasons, the protocol challenge, Xe, has to be generated by the entity
using the same approach.

The protocol is implemented in the TTCB API as a single call with the following
syntax:

(eid, chlg sign) TTCB localAuthentication(key, protection, challenge);

The input parameters are the key, the communication protection to be used, and
the challenge. The output parameters are the entity identification –eid– used to identify
the entity in the subsequent calls, and the signature of the challenge.

2.2.3.2 Trusted Random Number Generation Service

The trusted random number generation service gives trustworthy uniformly dis-
tributed random numbers. These numbers are basic for building cryptographic primitives
such as authentication protocols. If the numbers are not really random, those algorithms
can be vulnerable.

The interface of the service has only one function that returns a random number:

number TTCB getRandom();

2.2.3.3 Trusted Block Agreement Service

The trusted block agreement service (or agreement service for short) achieves agree-
ment between a set of distributed entities on a “small” fixed size block of data. This
service was selected for the TTCB for several reasons: it can be useful to perform simple
but crucial decision steps in more complex payload protocols; inside the TTCB it can be
reliable, secure and timely due to the TTCB properties; since the TTCB is synchronous it
can be solved deterministically, on the contrary to what happens in asynchronous systems
(FLP impossibility result [34]); it can be lightweight since it achieves agreement on a small
amount of data.

The Agreement Service is formally defined in terms of the functions TTCB propose,
TTCB decide and decision. An entity proposes a value when it calls TTCB propose.
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An entity decides a result when it calls TTCB decide and receives back a result. The
function decision calculates the result in terms of the inputs of the service. Formally, the
Agreement Service is defined by the following properties:

AS1 Termination. Every correct entity eventually decides a result.

AS2 Integrity. Every correct entity decides at most one result.

AS3 Agreement. If a correct entity decides result, then all correct entities
eventually decide result.

AS4 Validity. If a correct entity decides result then result is obtained applying
the function decision to the values proposed.

AS5 Timeliness. Given an instant tstart and a known constant Tagreement, a
process can decide by tstart+Tagreement.

The TTCB is a timely component in a payload system with uncertain timeliness.
Therefore, the Timeliness property is valid only at the TTCB interface. An entity can only
decide with the timeliness the payload system permits.

The interface of the service has two functions: an entity calls TTCB propose to
propose its value and TTCB decide to try to decide a result (TTCB decide is non-blocking
and returns an error if the agreement did not terminate).

out TTCB propose(eid, elist, tstart, decision, value);
result TTCB decide(eid, tag);

An agreement is uniquely identified by three parameters: elist (the list of entities
involved in the agreement), tstart (a timestamp), and decision (a constant identifying
the decision function). The service terminates at most Tagreement after it “starts”, i.e., after
either: (1) the last entity in elist proposed or (2) after tstart, which of the two happens
first. That shows the meaning of tstart: it is the instant at which an agreement “starts”
despite the number of entities in elist that proposed. If the TTCB receives a proposal
after tstart it returns an error.

The other parameters of TTCB propose are: eid is the unique identification of an
entity before the TTCB, obtained using the Local Authentication Service; value is the
block the entity proposes; out is a structure with two fields, error, an error code and tag,
an unique identifier of the agreement before a local TTCB. An entity calls TTCB decide

with the tag that identifies the agreement that it wants to decide. result is a record with
four fields: (1) error, an error code; (2) value, the value decided; (3) proposed-ok, a
mask with one bit per entity in elist, where each bit indicates if the corresponding entity
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proposed the value that was decided; (4) proposed-any, a similar mask that indicates
which entities proposed any value. Some decision functions currently available are:

• TTCB TBA RMULTICAST. Returns the value proposed by the first entity in elist

(therefore the service works as a reliable multicast) and the two masks.

• TTCB TBA MAJORITY. This function returns the most proposed value and the same
two masks.

• TTCB TBA TEQUALITY. Compares the values proposed. The entities that proposed
the value most proposed decide the result with the masks. The others receive an
error.

• TTCB TBA KEY. Used to establish shared symmetric keys between sets of entities.
Returns a symmetric key to the entities involved.

The motivation for the agreement service is to supply multi-entity fault-tolerant
protocols with an opportunity to synchronize at specific points in a reliable and timely
manner. Despite the fact that some entities may be corrupt and try to disturb the operation
of the protocol, they are prevented from: attacking the timeliness assumptions; sending
disturbing and/or contradicting (Byzantine) information to different parties. Why is this
so? Because the TTCB mediates this synchronization. As such, the API is based on the
idea that entities propose a value and later call a function to receive the result. Practical
examples of the utility of this service are the BRM and Membership protocols given later.

2.2.4 Time Related Services

2.2.4.1 Trusted Absolute Timestamping Service

Every local TTCB has an internal clock which is synchronized to the other local
TTCB clocks. This is achieved with a clock synchronization protocol inside the TTCB. The
trusted absolute timestamping service gives timestamps that, since clocks are synchronized,
are meaningful to all local TTCBs. The precision of the timestamps is limited by the
precision of the clock synchronization protocol. The interface of the service is:

timestamp TTCB getTimestamp();

When an application running on the payload part of the system asks for a times-
tamp, it receives it some time after it was generated by the TTCB. This delay is variable,
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depending mostly on the time taken by the operating system scheduler to give CPU time to
the application, on the time the application takes to read the timestamp, and on potential
attacks against time. However, a timestamp can still be useful since, e.g., the difference be-
tween two timestamps is an upper bound on the real duration of the time interval between
them.

2.2.4.2 Trusted Duration Measurement Service

This services measures the time taken to execute a function. The service verifies
the following property:

TDM Duration measurement. Given any two events occurring in any two nodes
at instants ts and te, the TTCB is able to measure the duration between those two events
with a known bounded error.

The service is used calling the functions:

tag TTCB startMeasurement(start ev);
duration TTCB stopMeasurement(tag, end ev);

The parameters start ev and end ev are timestamps that indicate respectively the
time of the beginning and end of the operation to measure. duration is the value measured
for the duration of the operation. start ev has to be obtained prior to the execution of
the service calling the timestamping service.

2.2.4.3 Trusted Timely Execution Service

This service allows an application to execute (sporadically) a function with a strict
timeliness and/or a high degree of security. The function is executed inside the TTCB
before a deadline (eager execution) and/or after a liveline (deferred execution):

TTE Timely execution. Given any function f with an execution time bounded
by a known constant TXmax , and given a delay time lower-bounded by a known constant
TXmin

≥ 0, for any execution of the function triggered at real time tstart, the TTCB does
not start the execution of f within TXmin

from tstart, and terminates f within TXmax from
tstart.

The function f is executed between instants start ev+delay and start ev+t exec:
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end ev TTCB exec(start ev, delay, t exec, f);

An issue to be studied later is what functions can be executed inside the TTCB. The
TTCB can either offer a library of generic useful functions or let an entity upload functions.
The latter case requires an entity that ensures that the function is correct (that it will not
attack the TTCB or create a vulnerability) and calculates the worst-case execution time
(WCET) for the function. When an entity uses the trusted timely execution service to
request the execution of a function, the WCET is used to make a schedulability analysis,
that assesses if the TTCB has resources to execute it. In case the TTCB does not have
resources, an error is returned.

2.2.4.4 Trusted Timing Failure Detection Service

This service is used to detect if a timed action is executed before its deadline. The
action is executed in the payload system and the TTCB simply verifies its timeliness. It
is defined by the two properties:

TTFD1 Timed strong completeness. Any timing failure is detected by the
TTCB within a known interval from its occurrence.

TTFD2 Timed strong accuracy. Any timely action finishing no later than
some known interval before its deadline is never wrongly detected as a timing failure by
the TTCB.

The service has different APIs depending on the timed action being local or remote.

Local detection API Local timing failure detection is done calling the following two
functions:

tag TTCB startLocal(start ev, spec, handler);
faulty TTCB endLocal(tag, end ev, duration);

The first function requests the TTCB to observe the timeliness of the execution of
an operation. start ev is the start instant and spec the expected duration. The handler

is used to tell the TTCB the reaction to have if a failure is detected, in case that is needed.
The handler has to specify a function in the same way as f in the trusted timely execution
service. Examples of reactions are a fail safe shutdown or a crash of the host.

The second function disables the detection, i.e., it indicates the TTCB that the
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action terminated. The parameters returned indicate the termination instant (end ev),
the duration measured and if there was a timeliness failure or not (faulty).

Distributed detection API The basic idea of this interface is that a distributed action
is initiated by the transmission of a message from a sender to a receiver. The way the
API works is similar to the local detection API, i.e., an entity calls the TTCB telling that
it is going to send a message (start a distributed action, TTCB startDistributed), sends
the message, the receiver receives the message, executes the remote operation, and tells
the TTCB that it is delivered TTCB delivDistributed). If the time to receive the message
expires, the TTCB executes a function, in case that was requested. Messages can be
multicast to several receivers:

tag TTCB startDistributed(start ev, spec, mid, elist, handler);
deliv ev TTCB delivDistributed(mid, tag);
list info TTCB waitInfo(tag);

The parameter mid is a unique message id. The handler is executed by the local
TTCB of the sender in case there is a timeliness failure. In TTCB delivDistributed the
parameters indicates that a message was received. When that call is made, the TTCB
checks if there was a timing failure and returns that information.

An entity, either the sender or a receiver, can get information relative to timing
failures using the function TTCB waitInfo. The input parameter tag is optional since the
entity may decide to wait for information of all or only one of the distributed actions it
is involved in. The parameter list info contains the delay to deliver and the indication
about timeliness faults for every receiver.

2.2.5 Other APIs

This section gives some TTCB APIs that do not correspond to a service.

Each local TTCB has an asynchronous key pair used for authentication and key
establishment. A conventional way to distributed public keys is to use a Public Key
Infrastructure. An entity can get keys from there in a certificate signed with the PKI
private key.

Another solution is for the entity to ask the key directly from a local TTCB using
function TTCB getLocalPublicKey that simply returns the local TTCB public key (see
below).
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key TTCB getLocalPublicKey();

A local TTCB identification is returned by the following function:

id TTCB getLocalTTCBid();

A local TTCB can fail only by crashing. Its crash is equivalent to the crash of the
host where it exists, i.e., whenever one crashes the also does the same. Therefore, the
information of a local TTCB crash can be useful for applications to test if a host crashed.
This API allows entities to do precisely that. The two functions are below. The first
receives a local TTCB as input. The second receives an entity eid as input and checks if
its host crashed:

out TTCB crashedLocalTTCBid(id);
out TTCB crashedEid(eid);
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3 Middleware Services and APIs

3.1 Multipoint Network

At the network level, there are several services that can be used by higher layers of
the architecture. These services form the basis for all the communication to and from each
site. Although it is possible to include a vast number of services at this level, we will only
focus on the ones we see as elementary, either because there is a specific need for them,
or because they are already standard services in the Internet. These services are IP, IP
Multicast, ICMP, IPSec and SNMP protocols.

3.1.1 Internet Protocol

The Internet Protocol (IP) [55] is designed to be used in interconnected systems
of packet-switched computer communication networks. IP provides the means for trans-
mitting blocks of data, called datagrams, from sources to destinations, where sources and
destinations are hosts identified by fixed length addresses. It also offers the service of frag-
mentation and reassembly of packets transparently. IP by itself can not be used directly
by an application, and so, it has two other protocols built on top of it: the User Datagram
Protocol (UDP) and the Transmission Control Protocol (TCP).

UDP [53] makes available a datagram mode of packet-switched computer communi-
cation in the environment of an interconnected set of computer networks. Applications can
send messages to other programs with a minimum set of guarantees using UDP. The key
characteristics of the protocol are: it is transaction oriented, the delivery of messages is not
ensured, nor is the order of message arrival, and there might be duplication of messages.

TCP [56], on the other hand, is a connection-oriented, end-to-end reliable protocol
designed to fit into a layered hierarchy of protocols which support multi-network appli-
cations. Applications can send messages using TCP, in a reliable way, to other programs
on host computers attached to distinct but interconnected computer communication net-
works. TCP does not rely on the protocols below, but rather assumes that it can obtain a
simple, potentially unreliable datagram service from the lower level protocols, such as IP.

The socket interface to TCP and UDP is well-known, and for details, consult for
instance the book by Stevens [67].
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3.1.2 IP Multicast

IP multicast gives the ability to transmit an IP datagram to a group of hosts, which
are identified by a single IP destination address. The multicast datagram is delivered to
all members of the group with the same guarantees given by the regular IP datagrams: it
is not guaranteed to reach all members, it is not guaranteed to arrive intact to all members
and it is not guaranteed to arrive in the same order to all members, relative to other
datagrams.

The membership of a group is dynamic, meaning that hosts can join and leave the
group at any time. Not only can a host belong to more than one group at a time, but it
also does not need to be a member of a group to send datagrams to it.

A group may be permanent or transient. A permanent group has a well-known,
administratively assigned IP address. It is the address, not the membership of the group,
that is permanent; at any time a permanent group may have any number of members,
even zero. Those IP multicast addresses that are not reserved for permanent groups are
available to be dynamically assigned to temporary groups, which exist only as long as the
group has members in it.

The API to send IP Multicast packets can be the same as the IP, in which an
application sends the packets to the group address, rather than to an individual host.
However, some extensions to the IP Module are desirable, so that IP recognizes IP group
addresses when routing outgoing datagrams.

In order to receive IP Multicast packets, the API must be expanded so that there
are two necessary functions: the JoinHostGroup and the LeaveHostGroup, which are self-
explanatory. The IP Module must also be expanded to maintain a list of host group
memberships associated with each network interface. An incoming datagram with one of
these groups as destination is processed in exactly the same way as if it has the host as
destination.

3.1.3 IPSec

Given its importance for the MAFTIA middleware, this section provides a brief
overview of the current state of IPSec. IPSec is designed to offer enhanced security to
IPv4 and IPv6 protocols, providing inter-operable, high quality, cryptographically-based
security. It offers several services, such as access control, connectionless integrity, data
origin authentication, protection against replays, confidentiality (through encryption) and
limited traffic flow confidentiality. Since these services are offered at the IP layer, they can
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be used by any higher layer protocol, such as TCP, UDP, ICMP, etc.

IPSec also supports negotiation of IP compression [65], which is motivated by the
observation that encryption used within IPSec prevents effective compression by lower
protocol layers.

To achieve these objectives, IPSec uses cryptographic key management procedures
and protocols and two traffic security protocols:

Authentication Header(AH) Providing connectionless integrity, data origin authenti-
cation, and an optional anti-replay service.

Encapsulation Security Payload (ESP) Maybe providing confidentiality (encryption),
and limited traffic flow confidentiality. Optionally, it may also provide connectionless
integrity, data origin authentication, and an anti-replay service.

Both AH and ESP are vehicles for access control, based on the distribution of
cryptographic keys and the management of traffic flows relative to these security protocols.
These protocols may be applied alone or in combination with each other to provide the
desired set of security services in IPv4 or IPv6, and both support two different modes of
operation:

transport mode In this mode, the protocols provide protection primarily for upper layer
protocols.

tunnel mode In this mode, the protocols are applied to tunneled IP packets.

IPSec allows the user (or the system administrator) to control the granularity at
which a security service is offered, allowing, for example, the creation of a single encrypted
tunnel to carry all the traffic between two security gateways or a separate encrypted tunnel
for each TCP connection between a pair of hosts communicating across these gateways.

Currently most of the IPSec implementations do not have an API that can be used
by applications to transmit secure data. Instead, it works at the operating system level,
and can only be configured by the system administrator. A system administrator can
define the policy for IPSec on a host basis, determining the ways by which a host can
connect securely to another.
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3.1.4 Internet Control Message Protocol

Although not needed at the moment, we believe it is worth noting the existence of
the Internet Control Message Protocol (ICMP) protocol [54]. It will not be defined here,
nor will we give an exact API for it, since it should follow the API for the IP protocol. We
merely name the protocol, so it can later be used, if so desired.

3.1.5 Simple Network Management Protocol

The Simple Network Management Protocol (SNMP) is also relevant for MAFTIA
since it might be important to the middleware operation, namely in the failure/intrusion
detection management. SNMP is actually a set of standards for network management that
include a protocol, a database structure and some data objects.

This protocol was adopted as a standard for network management in TCP/IP-based
networks in 1989 [14, 15, 16]). To enhance the functionality of SNMP and allow the man-
agement of both local area networks (LAN) as well as the devices attached to them, a
supplement for monitoring networks was issued and is known as Remote Network Mon-
itoring (RMON). In 1993, an upgrade to SNMP, called SNMP version 2 (SNMPv2) was
proposed and a revision of it was issued in 1995 [18]. SNMPv2 adds functional enhance-
ments to SNMP and codes the use of SNMP on OSI-based networks. In 1995, there was
also an extension to RMON called RMON2. This extension includes a specification to in-
clude monitoring of protocol traffic above the MAC level. In 1998, a new version of SNMP
was released and is known as SNMPv3. This new version defines a security capability
for SNMP and an architecture for future enhancements. SNMPv3 is intended to use the
functionality of SNMPv2, but can also be used with SNMPv1. It also introduces a new
concept to SNMP, a User Security Model [5].

SNMP has three commands to perform its function: the Get, Set and Trap com-
mands. The Get command is used by the manager to query the sensor status; the Set

command is used to change some value in the sensor Management Information Base (MIB);
and the Trap mechanism is what the sensor uses to alert the manager of some event.

The Agent Extensibility (AgentX) Protocol is intended to provide regular SNMP
with a high extension degree in order to enable multi-vendor compatibility and inter-
operability [30]. This was done because of the growing number of MIB modules defined by
vendors and/or IETF workgroups. As a result of this, as the RFC states, the “managed
devices are frequently complex collections of manageable components that have been in-
dependently installed on a managed node. Each component provides instrumentation for
the managed objects defined in the MIB module(s) it implements.”
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Because no standard existed, and there was a wide deployment of extensible SNMP
agents, it was very difficult to create SNMP-managed applications. One vendor would have
to support multiple sub-agent environments (APIs), to support different platforms. The
specification of a standard protocol to govern the communication between the master agents
and the sub-agents, allows multiple vendor products to communicate and inter-operate.

There are also some problems with a monolithic SNMP agent, that the AgentX
protocol tries to solve:

• For example, having an agent for the host, another for the print service and another
for the web server means that we must have three agents on the same machine. To
do this, they must be running in different system ports, since each SNMP agent
must have a distinct connection point in order to communicate, which becomes very
difficult to manage.

• Likewise, changes in a MIB require that the agent must be recompiled in order to
incorporate them. This means that the agent must be shut down, recompiled, and
re-run again. In the meantime, the management console will mark it as dead, since
it can not contact its agent.

By using AgentX, these two problems are “automatically” solved, because, in the
first case, AgentX subagents are multiplexed in a single SNMP agent, therefore using only
one communication port; in the latter, subagents are dynamically added and removed, and
so, when a MIB is changed, we need only shutdown the subagent handling it, and start the
new one, without stopping the master agent and without disturbing the rest of the MIB.

More information on SNMP can be found in [66].

3.1.6 Appia API to Multipoint Network

As an example, we provide the internal interface of the MN, which is based on
Appia classes, methods and events. The current API hides the socket interface to the
protocols UDP and IP Multicast. Figures 3.1 and 3.2 display these APIs. UdpSimpleSession
and UdpCompleteSession classes are the Session subclasses for UdpSimple and UdpComplete
protocols, respectively. Concurrently to these session, a reader class, running on another
thread listens the sockets for datagrams. Synchronization with Appia is made using async
events: SendableEvents are encapsulated in a UdpAsyncEvent and asynchronously inserted
in the channel. When the event is delivered, the session extracts the carried SendableEvent
and puts it in the channel.

For UDP, the InetWithPort class enriches Java InetAddress class with an integer
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Figure 3.1: udpsimple API.

port number. It intends to be a possible instance for the source and dest attributes of
SendableEvents of Appia. The AppiaMulticastInitEvent class is the event that must be
received by UdpCompleteSession in order to initialize multicast communication. It carries
the multicast address until the udpcomplete layer, notifies the UdpCompleteSession of the
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Figure 3.2: udpcomplete API.

multicast address (IP Multicast) to be used, and also specifies if local multicast messages
are supposed to be forwarded. The events handled by Appia are SendableEvent for UDP
communication, and AppiaMulticast for IP Multicast. When a Appia event is created,
the programmer defines which event he needs, defining either InetWithPort for the UDP
protocol or a IP Multicast address (in AppiaMulticastEvent) according to the IP Multicast
protocol.
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3.2 Communication Services

In this section we concentrate on group communication services in MAFTIA mid-
dleware as they enable the construction of dependable distributed applications. In essence,
dependability and fault-tolerance can be achieved by replicating a database or other ap-
plications service across a heterogeneous collection of servers.

MAFTIA middleware considers the existence of groups of participants that are
mapped onto groups of sites hierarchically, i.e., every participant belongs to a site and for
every group of participants there must be a group of sites such that the local sites of the
participants belong to the group of sites. When addressing group communication protocols
in this section, we do sometimes not distinguish between participants and sites, and simply
speak of a group of “parties”.

We shall describe here the semantics and provide APIs for the MAFTIA middle-
ware group communications primitives. It is important to note that there are noticeable
differences in these semantics depending upon precisely which types of groups are postu-
lated. Two important axes upon which groups are measured are those of open/closed and
static/dynamic [71]. An open group model permits arbitrary hosts to send messages to the
group, while in a closed model only hosts which are already members of the group may so
communicate. In contrast, a static group is one whose membership does not change over
time (or changes at a very long time scale, such as only upon manual reconfiguration),
while dynamic groups allow hosts to apply for group membership or, conversely, to be
excluded from the group automatically when certain trigger events occur (or fail to occur).

The MAFTIA middleware leaves it to the applications programmer to decide how
to implement either open or closed groups. The MAFTIA group communications API is
designed to facilitate coordinated actions within established groups; these actions may be
initiated by external parties, in an application requiring open groups, or exclusively by
group members themselves, in closed group settings.

The distinction between static and dynamic groups requires more profound differ-
ences in both the APIs and implementation, where dynamic groups present a host of new
complications. Certainly provision must be made for the whole issue of hosts joining, leav-
ing and being excluded from a group. In addition, protocols must be able to cope with
the group changing during protocol execution. There are also often subtle questions which
must be addressed relating to re-sharing of cryptographic secrets when the group changes,
which is particularly difficult to handle robustly in an asynchronous setting.

Finally, there is the question of within which system model we are working: purely
asynchronous or asynchronous with assistance from a TTCB. Using the services provided
by the TTCB allows much more efficient communications protocols and also permits fairly
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direct protocols for changing the group itself (at the cost of the additional infrastructure
supplying the TTCB). Purely asychronous protocols usually use more sophisticated cryp-
tographic techniques and sometimes more communication rounds, but work in a more
standard network configuration.

In this section we skirt this whole issue of group and system model by working
within the context of a fixed group and providing APIs which work in general asynchronous
networks and, in certain cases, in the TTCB-enhanced situation as well. (Protocols corre-
sponding to these APIs in the pure asynchronous case are shown below in Section 5.2.1,
while those which use a TTCB are in Section 5.2.2.) The unchanging group will be specified
by a fixed group identifier String groupID and will imply a fixed (known) list of participants.

Regardless of which model is followed, there are certain general ideas which are
used ubiquitously: these are the basic primitives of “broadcast” and “agreement,” and
the higher-level concept of “service replication.” Broadcast is used when a message is to
be sent to all members of the group. There are various flavors of broadcast depending
upon what other requirements are imposed. One such simply ensures all honest (properly
operating, non-corrupted) servers deliver the same set of messages, be they all messages
broadcast by all honest parties (reliable broadcast) or perhaps fewer but still uniquely de-
livered (consistent broadcast) messages. Another important choice is whether to guarantee
that all honest parties will deliver their messages in the same order (atomic broadcast) and
perhaps, additionally, that the message will be kept in encrypted form until it is delivered
(secure causal atomic broadcast).

Agreement is simply when all group members must agree to some binary value or,
more generally, to a valued in some larger domain. The binary case here is usually known
as Byzantine Agreement in the literature and requires all honest parties to come to the
same value, which value must be the same as that proposed by all honest parties if the
proposal is unanimous. The multi-valued case is more complex (but more useful), requiring
the accepted value to satisfy a certain, globally-known predicate.

We do not treat service replication explicitly in this section, as it is basically an
application-layer task. It can usually be implemented quite simply, however, out of the
broadcast and agreement techniques described here.

MAFTIA middleware provides three types of communications primitives in this
context: agreement, stream, and sequenced broadcast. The latter two are both examples
of what we just described as broadcast, divided into the cases of long-lived protocols which
act like communications channels for the group, and one-shot protocols which exist merely
to deliver a single message from a single sender. We proceed with detailed descriptions of
the APIs and semantics of these primitives.
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Agreement. We begin with agreement protocols. These all implement the basic concept
of Byzantine agreement, whereby the group members all propose some value to the group,
and this value is the decision produced by the protocol if the honest parties all make the
same proposal; in any case, all honest parties which decide, decide for the same value. Tra-
ditionally, the values in question are merely Boolean, but we also have a use for agreement
protocols where the values are in a larger domain. The difficulty in multi-valued Byzantine
agreement is how to ensure the validity of the decided value, which may lie in a set whose
size is not known a priori. Our approach is to introduce the idea of an external validating
predicate, which is known to all parties and can be used to check all proposals, and which
must be satisfied by the decision value of the protocol.

MAFTIA middleware provides implementations for the following agreement proto-
cols in the purely asynchronous system model:

binary Byzantine agreement – BinaryAgreement
validated binary Byzantine agreement – ValidatedAgreement
validated multi-valued Byzantine agreement – ArrayAgreement

Despite their differences, there is a common high-level API for all agreement pro-
tocols which is very simple. Let us say that XYZ is such a protocol. Then a new instance
of the protocol can be created by the command

Agreement agreement = new XYZ(protocolID, groupID);

where protocolID is a String, with application-specific meaning, naming the protocol in-
stance, and groupID is another String representing the group. This newly-created instance
is still in a quiescent state; the simplest way actually to use it is to launch the protocol,
with a certain initial vote, and to block until it returns, as follows:

Negotiable answer = agreement.negotiate(value);

Here both the answer and the value are objects of a class which extends the Negotiable
marker interface in a way useful for the particular protocol, such as containing a boolean
value for BinaryAgreement, a boolean value, byte[] proof and a BinaryValidator for ValidatedA-
greement, etc.; see below for details.

The protocol can also be called without blocking, as for example in the code frag-
ment
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agreement.propose(value); // returns immediately
while(true) {

if (agreement.canDecide()) {
answer = agreement.decisionNegotiable();
break;

}
else

do something else interesting
}

The methods negotiate, propose, canDecide and decisionNegotiable, with the above
semantics, arguments and return types, automatically exist for all agreement protocols by
virtue of the fact that they all extend the abstract Agreement class. Summarizing, then,
this invocation style for agreement protocols is carried by the following publicly-accessible
methods of the class Agreement:

public abstract class Agreement {
public Agreement(String protocolID, String groupID);
public Negotiable negotiate(Negotiable value);
public void propose(Negotiable value);
public boolean canDecide();
public Negotiable decisionNegotiable();
public void abort();

}

Here we have included one more method abort(), which can be used to terminate a running
protocol instance, but which leaves that instance and the corresponding instances run by
the other protocol participants in an indeterminate state.

We now specify the the specific content of the Negotiable objects needed for each
particular agreement protocol, as well as other, more direct method calls for using these
particular protocols.

1. The Negotiable for a BinaryAgreement must be a BinaryNegotiable, which is of the
form

public class BinaryNegotiable implements Negotiable {
public BinaryNegotiable(boolean value);
boolean value;
public boolean getValue();

}
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In addition, BinaryAgreement overloads the methods propose and negotiate with ver-
sions taking a simple boolean value and also provides a method decision() which
returns the boolean contents of the BinaryNegotiable decisionNegotiable(); the seman-
tics of these methods are obvious. Hence the full class description of BinaryAgreement
includes the additional methods

public class BinaryAgreement extends Agreement {
public boolean negotiate(boolean value);
public void propose(boolean value);
public boolean decision();

}

2. ValidatedAgreement requires a ValidatedNegotiable, of the form

public class ValidatedNegotiable extends BinaryNegotiable {
public ValidatedNegotiable(boolean value, byte[] proof,

BinaryValidator validator);
byte[] proof;
public byte[] getProof();
BinaryValidator validator;

}
public abstract class BinaryValidator {

public abstract boolean isValid(boolean value, byte[] proof, int offset,
int length);

public boolean isValid(boolean value, byte[] proof);
}

The application programmer must create a class which extends BinaryValidator, pro-
viding a body for the isValid(boolean value, byte[] proof, int offset, int length) method
that can determine the validity of a ValidatedNegotiable’s value given data lying in a
byte[] proof starting at location int offset and running for int length bytes, perhaps
using other identifying data which would therefore also be in the new class definition.
(The other signature of isValid uses the entire argument proof as its validating data.)
The field validator will then be a handle to an instance of this new class, and well-
formed instances vn of the ValidatedNegotiable class (such as valid propose values in
a ValidatedAgreement instance or outputs of ValidatedAgreement.decisionNegotiable())
will satisfy the consistency condition that

vn.validator.isValid(vn.value, vn.proof) == true.

Note that the ValidatedNegotiable returned by decisionNegotiable() and negotiate(Negotiable
value) contains a proof which is not necessarily that which was originally proposed;
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it is, however, some data which proves the validity of decided value (perhaps coming
from another party participating in the protocol).

In addition, we again use method-overloading and provide additional methods in
order to allow an interface which avoids the usage of Negotiable objects, as follows:

public class ValidatedAgreement extends Agreement {
public ValidatedAgreement(String protocolID);
public ValidatedAgreement(String protocolID, boolean bias);
public boolean negotiate(boolean value, byte[] proof, BinaryValidator

validator);
public void propose(boolean value, byte[] proof, BinaryValidator

validator);
public boolean decision();
public byte[] getProof();

}
Here we show the two constructors for this class, one of which functions as usual,
the other of which instead implements biased validated binary Byzantine agreement,
wherein the protocol will always decide for the given bias value if any honest par-
ticipant proposes that value. The semantics of the next two methods are exactly
analogous to their Negotiable versions, while getProof() gives a way to access directly
the validating data for a final decision of a completed ValidatedAgreement instance.

3. ArrayAgreement uses a ArrayNegotiable, of the form

public class ArrayNegotiable implements Negotiable {
byte[] value;
public byte[] getValue();
ArrayValidator validator;

}
public abstract class ArrayValidator {

public abstract boolean isValid(byte[] value, int offset, int length);
public boolean isValid(byte[] value);

}
Note that in ArrayNegotiable, there is no need for a separate proof field, as any
data required for validation can simply be part of the value array. Of course, similar
remarks as above in point 2 hold here for the classes that the application programmer
must define and for the consistency of well-formed instances of class ArrayNegotiable.

The Negotiable-less interface of ArrayNegotiable is via the additional methods
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public class ArrayAgreement extends Agreement {
public byte[] negotiate(byte[] value, ArrayValidator validator);
public void propose(byte[] value, ArrayValidator validator);
public byte[] decision();

}

Broadcast. We move on to sequenced broadcast protocols, implemented by extensions of
the class Broadcast and hence referred to sometimes merely as broadcast protocols (but see
the discussion of streams, below, for some very similar names). These are short-lived, one-
time protocols (just as the agreement protocols were), and provide agreement on a single
broadcast message. A party can send a messages on a new instance of such a protocol,
while other group members must know to listen for the message from that sending party
and with a predetermined protocolID. MAFTIA middleware provides two variants of this
type of broadcast: reliable broadcast, which requires that all honest parties deliver the
same set of messages and that this set includes all messages sent by all honest parties, and
consistent broadcast, which guarantees the uniqueness of delivered messages but not that
all honest parties actually deliver all messages. Consistent broadcast is extended also to
verifiable consistent broadcast, in a manner described below.

The sequenced broadcast protocols presented here all valid in the purely asyn-
chronous system model. In addition, reliable broadcast is also available in the TTCB-
enabled situation; the corresponding protocol is called (Byzantine) reliable multicast in
Section 5.2.2, below.

Sequenced broadcast protocols are extensions of the class Broadcast, and can be
created by

Broadcast broadcast = new XYZ(protocolID, groupID, sender);

where XYZ is either ReliableBroadcast, ConsistentBroadcast or VerifiableConsistentBroadcast,
protocolID and groupID are Strings and sender is an int identifying the intended sender within
the context of the specified group.

A message can be sent via sequenced broadcast only if the identity of the sending
host matches the sender value which was specified when the Broadcast object was made.
The byte[] payload would then be sent by the call

broadcast.send(payload);
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All parties can receive a message with the call

byte[] message = broadcast.receive();

which will block until the expected message is delivered. In case the application should
not remain blocked while waiting for delivery, the method canReceive() can be called, as
follows:

while(true) {
if (broadcast.canReceive()) {

message = broadcast.receive();
break;

}
else

do something else interesting
}

For completeness, we also give the public class skeleton of the abstract parent class
for sequenced broadcast protocols.

public abstract class Broadcast {
public Broadcast(String protocolID, String groupID, int sender);
public int getSender();
public void send(byte[] m);
public byte[] receive();
public boolean canReceive();
public void abort();

}

Here, the method abort() attempts to terminate a running protocol instance, leaving it
and the corresponding instances run by other parties in an indeterminate state. The
method getSender(), as one might expect, returns the identity of the declared sender for
that instance.

There is no protocol-specific change of, or additions to, the semantics for Reliable-
Broadcast or ConsistentBroadcast: both use exactly the same API as given by the parent
class Broadcast – they differ only in the guarantees of service they provide. However,
VerifiableConsistentBroadcast takes advantage of the fact that the underlying consistent
broadcast protocol is in fact an example of a verifiable protocol. What this means is that
a party who has delivered the payload message can produce a single protocol message that
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allows any other party to deliver the payload and terminate the broadcast as well. Such
a message is called the closing message of a broadcast. MAFTIA middleware provides
verifiable consistent broadcast in the class VerifiableConsistentBroadcast that extends Con-
sistentBroadcast. This is a virtual protocol on top of consistent broadcast that requires no
additional communication with other parties and uses the following interface:

public class VerifiableConsistentBroadcast extends ConsistentBroadcast {
public byte[] getClosing();
public void deliverClosing(MessageDigest hash, byte[] v, int offset, int

length);
public static byte[] getPayloadFromClosing(byte[] v);
public static boolean isValidClosing(ThresholdSignature thS,

MessageDigest hash, String pid, byte[] v, int offset, int length);
}

The method getClosing() will return the closing message of a protocol instance which has
delivered its payload, while deliverClosingMessage(hash, v, offset, length) will pass to an
instance which has not yet delivered its payload a valid closing message sitting in the byte[]
v starting at location offset and running for length bytes. The first static method above of
VerifiableConsistentBroadcast can be used by applications to extract a the actual payload
part of a closing message in a byte[] which was perhaps acquired in some unusual way, i.e.,
not directly by calling the getClosing() of a finished VerifiableConsistentBroadcast. Similarly,
the second static method can determine the validity of a candidate closing message sitting
at a certain offset in a byte[] v and running for a certain length. In these extra methods,
the MessageDigests and ThresholdSignatures must new instances created with the same
parameters as those used by the underlying ConsistentBroadcast.

Stream. We move on to stream protocols, a class of broadcast protocols which provide
long-lived communications channels for the group upon which multiple messages can be
delivered in sequence. (One may always think of streams as communication channels,
but the name “stream” is used here in order not to conflict with the Appia channels of
Section 2.1.) MAFTIA middleware provides four such protocols:

atomic broadcast – AtomicStream
secure causal atomic broadcast – SecureAtomicStream
reliable stream – ReliableStream
consistent stream – ConsistentStream

Atomic broadcast instances simply implement a communication stream upon which group
members can transmit messages with the guarantee that all honest parties will receive the
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messages out of this stream in the same order. Secure causal atomic broadcast is likewise
a stream with broadcasting and ordered reception. The difference is that it preserves
input causality in the sense of Reiter and Birman [60], which is achieved by dealing with
a given message entirely in an encrypted form up until its order is determined. This
permits applications where the cleartext of a message must be kept out of the hands of the
adversary – and his minions running corrupted servers in the group – until it is ordered
and delivered.

The remaining two streams, reliable and consistent, are of a somewhat different na-
ture: they are made up of many repeated instances of the corresponding broadcast protocol,
aggregated into streams. Thus the overhead of keeping track of which sender is associated
with which instance of the broadcast protocol, and of starting another such broadcast in-
stance when one terminates because a message is received, is handled automatically, at the
cost of some loss of detailed control.

All of the streams presented here work in the simple asynchronous model. When a
TTCB is available, a different protocol can be used to achieve atomic broadcast streams;
this is the (Byzantine) atomic multicast protocol of Section 5.2.2.

Note that the names “atomic broadcast” and “secure atomic broadcast” are stan-
dard in the literature and thus we use them, despite the confusion to which this could
possibly lead with the sequenced broadcast protocols described above; the class names, at
least, will make it clear that we are speaking of streams and not broadcast protocols. Since
the idea of aggregated broadcast streams is not well-known, we are instead free to use
the new names “reliable stream” and “consistent stream”, more consistently with naming
conventions of this document.

The common features in stream protocols are implemented in a class Stream, whose
instances are created by the command

Stream stream = new XYZ(protocolID, groupID);

As usual, protocolID and groupID are Strings with application-specific meaning. A byte[]
payload may be broadcast on a given stream by the call

stream.send(payload);

Here payload will be the message itself for all protocols other than secure atomic broadcast,
in which special case the payload will merely be the ciphertext corresponding to the de-
sired message. This ciphertext can be prepared by calling a special static method in class
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SecureAtomicStream as follows

payload = SecureAtomicStream.encrypt(protocolID, groupID, publicKey,
cleartext);

Here publicKey is a BigInteger public key for the threshold cryptosystem used in secure
causal atomic broadcast and cleartext is a byte[].

Note that sending can block, if insufficient progress is being made on the stream
protocol and buffers are full. In order to determine if an attempt to send will block, the
method canSend() can be called, as for example:

while(true) {
if (stream.canSend()) {

stream.send(message);
break;

}
else

do something else interesting
}

Delivered messages may be found by calling

byte[] message = stream.receive();

which will block if there is no message currently waiting to be received. To avoid blocking,
the method canReceive() may be called, as in the following code fragment:

while(true) {
if (stream.canReceive()) {

message = stream.receive();
break;

}
else

do something else interesting
}

Every party participating in the protocol must be prepared to call receive() for an
arbitrary number of payloads, until the stream closes. If the outputs are not so removed,
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then the stream will stall and eventually block the parties who are trying to send.

When the application has determined that it is ready to close the stream it may
call close(), after which is may no longer send any more messages on that stream. It must
however continue to receive() messages until isClosed() is true, or else call waitDone(), which
will block until the stream has terminated (implicitly receiving and discarding all necessary
messages). Instead of calling close() and waitDone() separately, the application may call
also closeWait(), which signals the termination and returns only after the stream has been
closed.

Note that protocol instances handle these termination requests as normal stream
messages, simply counting the number of such which are received from distinct partners
and ending their execution when that number exceeds the possible number of corrupted
parties. Thus the stream is guaranteed to close when all honest parties together close() it,
and it will not close if only the adversary so desires.

Finally, calling abort() provides a way to terminate an agreement instance imme-
diately. The local instance of the protocol is cleaned up, but the state of other parties
engaged in the protocol is unspecified.

Summarizing, the public interface of the class Stream is:

public abstract class Stream {
public Stream(String protocolID, String groupID);
public void send(byte[] m);
public boolean canSend();
public byte[] receive();
public boolean canReceive();
public void close();
public boolean isClosed();
public void waitDone();
public void closeWait();
public void abort();

}

3.3 Activity Services

This section describes the MAFTIA transactional support activity service. The
transactional support activity service is intended to support both applications built using
the MAFTIA middleware and other activity support services, for example it can be used
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to guarantee the atomicity of updates to a replicated authorisation server. From a user’s
point of view, the transaction support service appears to be a CORBA-style transaction
service; this is because its intrusion-tolerance is a property of the implementation rather
than of its interfaces.

In Section 3.3.1 we provide an overview of transactions, in 3.3.2 we introduce a
high-level view of the MAFTIA transactional support activity service architecture, in Sec-
tion 3.3.3 we introduce the protocols that are used to implement the MAFTIA transactional
support activity service, and in Section 3.3.4 we introduce the components that implement
the protocols.

3.3.1 Overview of the Transactional Support Activity Service

Services provided over a wide area network such as the Internet involve communi-
cation and cooperation between many diverse organisations and their hosts. Faults that
may be due to hardware failure, software failure or malicious agents can disrupt service
delivery. Ideally service functions are atomic in their effect. Atomicity is an “all or noth-
ing” property. If a function is atomic then in the event of failure all of the operations that
make up the function will either have taken effect or not taken effect. A function is not
atomic if in the event of failure the participants are left in an inconsistent state.

For example, imagine a user of a shopping service. When the user purchases items
from the service then the items are dispatched for delivery and the user’s bank account
is debited for the appropriate amount. This purchase function should be atomic. In the
event of a server failure or client failure then a situation should never arise where the items
have been dispatched but the user’s bank account has not debited, or vice-versa.

Transactions are a well-known technique for providing atomicity. A transaction is
a set of operations that has the following properties:

Atomicity – the transaction completes successfully (commits) or if it fails (aborts) all of
its effects are undone (rolled back).

Consistency – transactions produce consistent results and preserve application specific
invariants.

Isolation – intermediate states produced while a transaction is executing are not visible to
others. Furthermore, transactions appear to execute serially, even if they are actually
executed concurrently.

Durability – the effects of a committed transaction are never lost (except by a catas-
trophic failure).
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These ACID properties guarantee that a transaction supports the “all or nothing”
property. A transaction that has terminated with a commit has all the changes made
within it made durable. A transaction that has terminated with an abort has the changes
undone.

Typically transaction support services can provide the “all or nothing” property in
the face of software or hardware failure. As transactions progress all participants keep local
durable logs that can be used to restart the transaction after a crash. Also replication can
be used to provide high availability for the objects that are changed during the execution
of a transaction. However, in the MAFTIA project we extend the definition of fault
tolerance to include tolerance of malicious faults. To do this we apply the general MAFTIA
architectural principle of distributing trust by replicating the servers implementing the
transaction service and the resource managers.

3.3.2 Transaction Support Architecture

A high-level view of the transaction support architecture is shown in figure 3.3. The
transaction service architecture is made up of clients, resource managers and transaction
managers. In order to provide intrusion-tolerance, the resource managers/resources and
transaction managers are replicated. However, this is not visible from the viewpoint of a
user of the service.

56



Clients. Clients use the transaction manager to begin and end transactions. Within
the scope of a transaction the clients operate on resources via resource managers. As a slight
extension to the typical transaction architecture, we allow multiple clients to participate
in a transaction. A single client begins a transaction, and passes the transaction identifier
to other clients so that they can cooperate within the transaction scope too. Individual
clients can unilaterally force a transaction abort but all clients must unanimously agree to
attempt a transaction commit.

Resource Managers. A resource manager is a wrapper for resources that allows
the resource to participate in two phase commit and recovery protocols coordinated by a
transaction manager. The resource may or may not be persistent. There may be multiple
resources managed by a each resource manager. Persistent resources may use a persistency
service or a database. Resource managers also manage the concurrent access by clients to
resources. Concurrency control can be pessimistic or optimistic. Resource managers can
recover after a failure by communicating with their replicas.

Transaction manager. The transaction manager is primarily a protocol engine.
It implements the two phase commit protocol and recovery protocol. It also allows the
creation of new transactions and the marking of transaction boundaries. In order to par-
ticipate in transactions, resource managers are required to register themselves with the
transaction manager. Transaction managers can recover after a failure by communicating
with their replicas.

3.3.3 Transaction Support Protocols

In this section we provide an overview of the protocols used to implement MAFTIA
transaction support.

3.3.3.1 Atomic Commitment and Abort Protocols

We bae our atomic commitment and abort protocols on the basic two phase commit
(2PC) protocol as described in [48]. We illustrate a successful commit of a transaction
in Figure 3.4 which shows the main interactions between a client, transaction manager,
resource manager and a resource.

In the figure, a client establishes a transaction by invoking the begin operation on
the transaction manager. The transaction manager allocates a unique transaction identi-
fier (tid) and returns it to the client. The client then invokes a method on a resource by
sending an invocation request to the resource’s resource manager, note that the transaction
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identifier is passed with the invocation. The resource manager uses the transaction iden-
tifier to determine if it is already involved in a transaction, if it is not then it invokes the
register operation on the transaction manager to register itself for the transaction. After
waiting for a reply indicating a successful registration, the resource manager then delegates
the invocation to the resource it manages. The resource returns the result to the resource
manager, which returns it to the client. Further method invocations proceed in the same
manner. Finally, the client asks the transaction manager to attempt a commit by invoking
the commit operation on the transaction manager. The transaction manager then invokes
the prepare operation on all resource managers participating in the transaction. If all re-
source managers reply that they are prepared to commit, then the transaction manager
tells all participating resource managers to commit their results by invoking the commit
operation on the resource manager. After a commit, the resource manager acknowledges
the commit to the transaction manager. When all resource managers involved in the trans-
action have acknowledged a successful commit, then the transaction manager informs the
client that the commit was successful.

We do not show in the figure what happens if, in response to a prepare message,
a resource manager replies that it cannot commit. In this case, the transaction manager
decides upon abort and sends abort messages to all resource managers. The resource
managers perform an abort of any changes made within the context of the transaction and
acknowledge the abort by sending acknowledgements to the transaction manager. When
the transaction manager receives acknowledgements from all resource managers, then the
transaction manager informs the client that the commit was unsuccessful.

We extend the basic 2PC by allowing multiple clients to take part in the same
transaction. We provide a join operation that allows clients to join an existing transaction,
and modify the commit logic so that the wishes of all the participating clients must be
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taken into accound We assume that all clients must agree on committing a transaction
but that any client can force the abort of a transaction. This is similar in concept to the
semantics of Coordinated Atomic Actions [74, 58] where participants must either agree on
a normal or exceptional outcome, or abort the entire action. As our model of multi-party
transactions does not currently consider exceptions then the agreement must be on whether
to commit. If there is no agreement to commit then the transaction is aborted. Once a
decision has been made the protocol executes in two phases:

• the transaction manager asks all resource managers participating in the transaction
if they vote for commit or abort of the transaction.

• the transaction manager decides whether to commit or abort on the basis of the
collected votes and informs each resource manager involved in the transaction.

3.3.3.2 Distributed Locking Protocols

As resources may be used by multiple clients and may participate in multiple trans-
actions it is necessary to use a concurrency control protocol to ensure that the isolation
property is guaranteed. For simplicity we have adopted a pessimistic scheme. A pessimistic
locking protocol requires that a client requests a lock for a resource before it accesses the re-
source. A lock manager tracks the locks held for resources and makes the decision whether
to grant a new lock for a resource. Unless a deadlock arises the lock manager will grant
all locks eventually. It will grant a lock immediately unless there is a conflict between
the lock requested and the locks held for the resource. If there is a conflict then the re-
quest is unsuccessful and the request must be retried, essentially the client must block
until the request is satisfied. Lock conflicts are determined by examining lock types and
the transactional context of locks. Pessimistic locking schemes suffer from the problem of
deadlock. Deadlock occurs when two concurrent transactions obtain locks on some of each
other’s required resources and neither transaction can progress until it has locks on all of
its required resources. Deadlock can be resolved by using timeouts on lock possession or
using a deadlock detection process.

If locks are acquired and released before the end of a transaction then there is a
possiblility that a transaction T might acquire a write lock on a resource, make change and
then release the lock before deciding on abort or commit. After the release of the lock,
another transaction U might read the value of the resource and take some action. However,
transaction T could then abort and require that the resource restore its previous state, prior
to the write that took place within the context of the transaction. Now transaction U will
be acting upon an incorrect value. To prevent this situation, strict two phase locking
scheme (strict 2PL), see [2] for more detail, is used. In strict 2PL, transactions obtain and
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release locks in two phases. In the growth phase, transactions obtain locks on the resources
that are involved in the transaction. In the release phase, locks are only released when the
transaction commits or aborts.

3.3.3.3 Recovery Protocols

In a standard distributed transaction system, recovery is required to cope with
the failure of transaction managers and resource managers. As will be explained in the
protocols section, the MAFTIA distributed transaction system can tolerate a proportion
of failures of both transaction managers and resource managers, yet still provide correct
service. However, it is desirable that we provide some support for recovery to allow failed
managers to be restarted under the control of an outside (trusted) agency in order to
prevent creeping intrusion. Since we are dealing with intrusion tolerance we assume that
failure is detected through the use of the MAFTIA intrusion detection system and recovery
involves the possible rebuild of an entire host where the manager is located rather than a
simple restart as in a conventional system.

Since we assume that there are correct replicas always available in the system then
we propose a recovery scheme that does not rely upon local durable logs. Instead, we
assume that when a manager restarts it simply queries its peers in order to find out its
current status. Essentially, we implement a state transfer protocol.

3.3.4 Transaction Support Components

In this section we provide an overview of the components implementing transactional
support activity service.

3.3.4.1 Resource Managers

Each resource manager implements the semantics required for participation in the
transactional protocols, and recovery semantics. It is implemented using the Appia frame-
work, and is implemented using the following protocols: ResourceManager, LockManager,
and RecoveryManager. The intrusion-tolerance properties of these protocls rely upon the
VotingMulticast, Invocation and OpenGroup protocols that provide transparent service repli-
cation. As we are not addressing service replication in this part of the deliverable we leave

60



the discussion of these protocol to Section 5.3.3. All communication is via events that are
sent via Appia channels. Typically, there is one Appia channel for communicating with the
transaction manager group, one Appia channel for communicating with other resources in
the same resource manager group, and one Appia channel for communicating with clients.

Each resource manager may manage multiple resources that can be created and
destroyed dynamically. We assume that each resource has a resource identifier (ObjectID)
that is unique to each resource manager (and when resource managers are replicated,
unique to each resource manager group).

The resource manager does not share the same application interface as the resources
it manages, primarily because it may manage resources of many different types. Instead
we provide a generic invocation method (invoke) that can be used to invoke a particular
method of a managed resource.

When a resource manager is invoked in the context of a transaction, the resource
manager registers itself with the transaction manager by invoking the transaction man-
ager’s registerResource method. The transaction manager keeps a list of resources partici-
pating within each transaction.

When a resource is invoked for the first time, the resource manager invokes the
save method of the resource in order to record its state prior to any changes within the
transactional context. Should the transaction be commited then the saved state is thrown
away when commit is invoked on the resource, but if abort is invoked then the current state
is returned to the save state so that the effect of any changes is undone.

How does the resource manager determine the transactional context? The client
must propagate the transaction identifier with every invocation of a resource manager op-
eration. There are generally two ways to do this: implicit, or explicit propagation. With
implicit propagation some hidden context is associated with the client threads and passed
transparently whenever the client invokes a resource manager operation. The drawback
with this approach is that it makes it difficult to program multi-party clients as the trans-
action identifier is not exposed and cannot be passed between clients. With explicit prop-
agation the transaction identifier is exposed and client must add the transaction identifier
as an argument to every invocation of a resource manager operation. Explicit propaga-
tion can be implemented by passing a transaction identifier argument whenever a resource
operation is invoked via its resource manager. For example, if a resource has a deposit
operation with the signature:

public void deposit(float amt)

Then when the operation is invoked by a client via the resource manager, the
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transaction identifier passed as a parameter to the resource manager’s invoke method in
addition to the resource identifier, method name and array of method arguments:

invoke(transactionId, objectId,”deposit”, new Object[] {amt})
During the execution of 2PC, the transaction manager invokes the resource manager

prepare method to determine if a resource can be successfully committed. On receiving the
event, the resource manager invokes the operation prepare on the encapsulated resource
to determine if it is capable of committing. If the resource manager can commit changes
(make them permanent) then the resource manager returns true, otherwise it returns false.

Once the transaction manager has taken into account the result from asking all
resources registered as taking part in the transaction to prepare, it either asks each re-
source manager to commit or abort on each resource manager. A resource manager receiv-
ing a CommitEvent invokes the commit operation on the resource, this makes permanent
any changes made within the transactional context. A resource manager receiving an
AbortEvent invokes the abort operation on a resource, forcing the resource to forget any
changes made within the transactional context.

As resources may be used by multiple clients and may participate in multiple trans-
actions it is necessary to use a concurrency control protocol to ensure that the isolation
property is guaranteed. For simplicity we have adopted a pessimistic scheme. A pessimistic
locking protocol requires that a client requests a lock for a resource before it accesses the re-
source. A lock manager tracks the locks held for resources and makes the decision whether
to grant a new lock for a resource. Unless a deadlock arises the lock manager will grant
all locks eventually. It will grant a lock immediately unless there is a conflict between the
lock requested and the locks held for the resource. If there is a conflict then the request
is blocked until it can be satisfied. Lock conflicts are determined by examining lock types
and the transactional context of locks. Pessimistic locking schemes suffer from the problem
of deadlock. Deadlock occurs when two concurrent transactions obtain locks on some of
each other’s required resources and neither transaction can progress until it has locks on
all of its required resources. Deadlock can be resolved by using timeouts on lock possession
or using a deadlock detection process.

We implement a “one writer, multiple reader” concurrency control protocol for each
resource managed by a resource manager.

High level API. A resource manager implements the ResourceManager interface
while a resource implements the Resource and application interface. For example,
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class ApplicationResourceMgr implements ResourceManager {

}

The full ResourceManager interface is shown below:

interface ResourceManager {
//ask the object if it can commit
public boolean prepare(Transaction tid, ObjectID oid);
// force a commit - save changes
public void commit(Transaction tid, ObjectID oid);
// abort changes
public void abort(Transaction tid, ObjectID oid);
// request a lock on a resource
public void setLock(Transaction tid, ObjectID oid, int lockType);
// unlock a resource (not done by client but by transaction
// manager)
public boolean unLock(Transaction tid, ObjectID oid);
// invoke an object method
public Object invoke(Transaction tid, ObjectID oid, String method,

Object[] args);
// initiate recovery
public void initRecovery();
// provide resource manager status
public log getStatus();

}

Every resource managed by the resource manager must implement the Resource
interface shown below:

interface Resource {
//checkpoint object state
public void save();
//ask the object if it can commit
public boolean prepare(Transaction tid);
// force a commit - save changes
public void commit(Transaction tid);
// abort changes
public void abort(Transaction tid);

}
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High level Appia API. We describe the resource manager API in terms of the
events that it accepts and provides in Table 3.1. We describe the protocol, using a tabular
format that briefly describes each event, and which channel it is sent via. For brevity, we
do not show all low level events such as ChannelInit. Nor do we show the subprotocols that
are explained in the protocols section of this deliverable.

Event Purpose A/P Channel
InvokeEvent Invoke an operation on a resource A client
PrepareEvent Can a resource be committed? A TM group
AbortEvent Abort changes made to a resource A TM group
CommitEvent Force a resource to commit changes A TM group
RegisterResourceReplyEvent Confirms registration of resource A TM group
ResourceAckReplyEvent Acknowledges TM requests P TM group
RegisterResourceEvent Requests registration of resource P TM group
InvokeReplyEvent Encapsulates the result of the invocation P client
SetLockEvent Request a lock A client
UnlockEvent Request a lock to be released A TM group
LockReplyEvent Result of a lock or unlock request P client
RecoveryEvent Initiates recovery process A trusted source
GetStatusEvent Request current status A RM group
GetStatusReplyEvent Current resource manager status P RM group

RM Resource manager, TM Transaction manager, A/P Accept/Provide.

Table 3.1: Appia API for ResourceManager protocol

3.3.4.2 Transaction Manager

Each transaction manager implements the semantics required for driving the atomic
commitment and abort protocols, as well as recovery semantics. It is implemented using the
Appia framework, and is implemented using the following protocols: TransactionManager,
and RecoveryManager. As for the Resource Manager, the intrusion-tolerant implementation
also relies upon the VotingMulticast, Invocation, and OpenGroup protocols that are described
in Section 5.3.3. All communication is via events that are sent via Appia channels. There
are typically the following channels: one channel for communicating with the clients, one
channel for communicating with other transaction managers, and one channel per resource
manager group.

Each transaction manager can support multiple transactions, each transaction has a
unique transaction identifier (TID). A client starts a transaction by invoking the transaction
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manager method begin. The transaction manager generates a unique transaction identifier
for the transaction. The TID is returned to the client. This TID is used as a capability and
it allows any client possessing it to participate in the transaction. A client that wishes to
take part in an active transaction sends the TID as an argument of an invocation of the
transaction manager method join. Only authorised clients are allowed to join a particular
transaction, and interact with resource managers also taking part in the transaction. A
client ends a transaction by sending the TID as an argument of an invocation of the
transaction manager method commit or abort.

An example of the use of the transaction manager to demarcate a transaction is
shown below:

// begin the transaction
Transaction myTid = TransactionManager.begin();
// transactional operations
// end the transaction
TransactionManager.commit(myTid);

At the end of a transaction the transaction manager also has the responsibility of
releasing any locks that have been acquired during the two phase locking protocol.

High level API. The full TransactionManager interface is shown below:

interface TransactionManager {
// create a new transaction
public static Transaction begin();
// join an active transaction
public Transaction join(Transaction tid);
// request a transaction commit
public void commit(Transaction tid);
// force a transaction abort
public void abort(Transaction tid);
// register a resource as being a member of the transaction
public void registerResource(Transaction tid, ObjectID oid,

ResourceManager r);
// initiate recovery
public void initRecovery();
// provide transaction manager
public log getStatus();

}
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Transaction Manager Appia API. We describe the Appia API in terms of the
events that the Transaction Manager protocol accepts and provides in Table 3.2.

Event Purpose A/P Channel
BeginEvent Begin a transaction A client
JoinEvent Join a transaction A client
CommitEvent Commit a transaction A client
AbortEvent Abort a transaction A client
RegisterResourceEvent Register a resource A RM group
RegisterResourceReplyEvent Acknowledge registration P RM group
PrepareEvent Can commit? P RM group
ResourcePrepareReplyEvent Acknowledges prepare request A RM group
CommitEvent Force commit P RM group
AbortEvent Force abort P RM group
ResourceAckEvent Acknowledges commit or abort request A RM group
RecoveryEvent Initiates recovery process A trusted source
GetStatusEvent Request current status A TM group
GetStatusReplyEvent Returns the current status P TM group
UnlockEvent Request release of a lock P TM group

RM Resource manager, TM Transaction manager, A/P Accept/Provide.

Table 3.2: Appia API for TransactionManager protocol

3.4 Membership

Dynamic groups allow for addition and removal of members during operation, and
such group membership changes should be transparent to the applications using the group’s
services. Thus, the communication services above are not affected by membership changes,
and the focus of this section is on the orthogonal question of how new members join the
group and current members leave the group.

As mentioned before, MAFTIA middleware considers the existence of groups of
participants that are mapped on groups of sites. This provides a level of clustering that is
useful both to handle security issues and scalability. The membership of groups of sites is
handled by the Site Membership module, while the membership of groups of participants is
handled by the Participant Membership module. In the following subsections we describe
the interface of each of these modules. All functions are non-blocking and their results are
returned as events.

The membership of both participant and site groups at a given instant is called a
view. The concept was defined in the context of the view synchrony group semantics [4, 3].
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Informally, view synchrony provides membership information to participants (or sites) in
the form of views and guarantees that all participants (or sites) that install two consecutive
views deliver the same set of messages between these views. However, the architecture of
MAFTIA middleware does not impose a specific semantics and views can be seen sim-
ply as the membership at a given moment. When views are used, they are broadcasted
atomically to all group members (participants/sites) when they change, in a special system
management atomic broadcast stream. Changes can be due to member joins, leaves and
to failures (of participants/sites).

MAFTIA middleware implements the group membership API below using a TTCB.
There is also an approach envisioned which uses secret resharing to work in the simple
asynchronous model. This latter method would again implement the same API below
but require some additional functionality and add one more API method, which we now
explain.

The calls of membership modules have no direct effect on the parameters of the
secret keys shared by the members of a particular group. Recall that the group communi-
cation primitives have two parameters n, the number of parties, and t, the maximal number
of corrupted parties. With dynamic groups, the parameter n remains constant only be-
tween the deliveries of two successive views. Thus, the methods joinGroup, leaveGroup and
removeGroup described below change these parameters to n′ = n + 1 (in the first case) or
n′ = n− 1 (in the latter two cases) but all have t′ = t.

Moreover, every party that joins a group must receive its share(s) of the crypto-
graphic key(s). In absence of an on-line trusted dealer who can supply the key material,
this requires that the group members carry out a distributed protocol whenever a new
member joins the group. Such protocols are implicit in the description of the membership
interface above.

When the size of the group shrinks, it must be possible to lower t as well, in order to
maintain the system invariant n > 3t, and when the group grows, it is desirable to increase
also t for more resiliency. This is achieved by a call to

reshare(groupID, dt)

where dt is an integer denoting the threshold change ∆t, which can be positive and
negative. Its effect is to change the previous group parameters n and t to the new values
n′ = n and t′ = t + ∆t.

In order to guarantee the security of the shared secrets despite the removal of faulty
and potentially corrupted parties, the share refresh operation triggers a refresh of all key
shares, similar to the one in proactive threshold cryptosystems [13]. This renders knowledge
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of old key shares from the previous view useless for the current view and all future views,
which is necessary for maintaining proper operation.

3.4.1 Site membership module.

This module offers the following calls:

joinSiteGroup(siteGroupID, credential);
leaveSiteGroup(siteGroupID);
registerSiteEvents(id, siteGroupID, mask);
view = getSiteGroupView(siteGroupID);

joinSiteGroup makes the site try to join the group with site group id siteGroupID.
credential is data used for joining authorization. We do not define what is the credential
at this point, but it can be something that shows the possession of a certain cryptographic
secret. Other sites in that group can grant or deny the join. If the group does not exist a
new one is created with a single site. The result of the operation is returned as an event.

leaveSiteGroup makes the site leave the group siteGroupID.

registerSiteEvents allows a process to register (and unregister) the events that it
wants to receive. Events can be the results of group operations (join, leave) or view changes.
Events are registered by a process or module identified by id, for the site group identi-
fied by siteGroupID. mask indicates witch events are supposed to be registered (and/or
unregistered).

getSiteGroupView asynchronously returns a site group view. The group is identified
by siteGroupID.

In general, site groups are not used directly by user level entities but by the Partic-
ipant Membership module to implement participant groups.

3.4.2 Participant membership module.

This module offers the following calls:
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joinGroup(id, participantGroupID, credential);
leaveGroup(id, participantGroupID, credential);
registerEvents(id, participantGroupID, mask);
view = getGroupView(participantGroupID);

joinGroup can be used by a participant identified by id to try to join the group
with group id participantGroupID. Join authorization is granted or denied based on the
credential given by the participant. If the group does not exist a new one is created
with a single participant (and a corresponding site group is also created). The result of
the operation is returned as an event.

leaveGroup makes the participant leave the group participantGroupID. Only the
participant can request itself to leave the group, so it has to give his credential again in
this operation. An error code is returned. If the participant was the last of this site in the
group, the site leaves also the corresponding site group.

registerEvents allows a participant to register (and unregister) the events that it
want to be informed of. Events can be group operations results (join, leave) or view
changes. Events are registered by a participant identified by id, for the group identified by
participantGroupID. mask indicates witch events are supposed to be registered and/or
unregistered.

getGroupView asynchronously returns the view of the group participantGroupID.
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4 Runtime Environment Protocols

4.1 Trusted Timely Computing Base

In this section, we describe the protocols that implement the only security related
distributed service that is provided by the TTCB, the Agreement Service.

4.1.1 Agreement Service Protocol

The TTCB Agreement Service is implemented using a time-triggered protocol:
TTCB propose is called asynchronously, and gives the TTCB data that is stored in ta-
bles; then, periodically that data is broadcast to all local TTCBs and, also periodically,
data is read from the network and processed.

AN1 Broadcast – The AN has an unreliable packet broadcast primi-
tive

AN2 Integrity – Nodes can detect if packets were corrupted in the
network. Corruptions are converted to omission failures

AN3 Omission degree – No more than Od omissions may occur in a
given interval of time

AN4 Bounded delay – Any correct packet is received within a max-
imum delay Tsend from the send request

AN5 Partition free – The network does not get partitioned

AN6 Broadcast Degree – If a broadcast is received by any local
TTCB other than the sender, then it is received by at least Bd
local TTCBs

AN7 Confidentiality – The content of network traffic cannot be read
by unauthorized users

AN8 Authenticity – Nodes can detect if a packet was broadcast by
a correct node

Table 4.1: Abstract Network (AN) properties.

Protocol 1 shows the protocol. It is based on TTCB assumptions that we summarize
here for clearness:
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• the local TTCBs have clocks synchronized to π;

• the protocol code is executed in real-time (therefore there is a worst case execution
time for every section of code);

• every local TTCB communicates with the others exclusively by broadcasting a mes-
sage with a constant period;

• the network is described by the Abstract Network (AN) model (see Table 4.1).

The protocol uses two tables. The dataTable stores all agreements data. Each
record has the state of one agreement with the format: (tag, elist, tstart, decision,

vtable). All fields have the usual meaning (Section 2.2) except vtable, which is a table
with the values proposed (one per entity in elist). sendTable stores data to be broad-
cast to all local TTCBs. Every record is a proposal with the format: (elist, tstart,

decision, eid, value). The agreement is identified by (elist, tstart, decision).
eid identifies the entity that proposed and value is the value proposed.

The protocol has four routines. The propose routine is executed when an entity
calls the TTCB function TTCB propose (Lines 1-8). The routine begins doing some tests:
if the entity already proposed a value for this agreement; if the entity that calls the service
is in elist; if tstart already expired (Line 2). Other tests, are also made but are not
represented since they are not related to the algorithm functionality. If the propose is
accepted, its data is inserted in sendTable and dataTable, and the tag is returned (Lines
4-8). The broadcast routine broadcasts data to all local TTCBs every Ts (the period) either
if there is data in sendTable or not (Lines 9-13). Every message is broadcasted Od + 1
times in order to tolerate omissions in the network (Od is the omission degree). After the
broadcast, sendTable is cleaned. The receive routine reads and processes messages every Tr

(Lines 14-21). Since each message is broadcasted Od+1 times, copies of the same message
have to be discarded by the function read (Line 15). For each message received, the data
in each record of sendTable is inserted in dataTable (Lines 16-20). The decide routine is
executed when an entity calls the function TTCB decide. The routine searches dataTable
for the agreement identified by the tag and returns an error if it does not exists. If the
instant tstart+Tagreement passed or the local TTCB has the values proposed by all entities
in elist, the result is obtained and returned.

We proved that the protocol implements the Agreement Service and that Tagreement

can be given by [26]:

Tagreement = Ts + WCETsend + Tsend + Tr + WCETreceive + π (4.1)
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Protocol 1 Agreement Service internal protocol (at a local TTCB).
1 When entity calls TTCB propose(eid, elist, tstart, decision, value) {propose routine}
2 if (entity already proposed) or (eid /∈ elist) or (clock() > tstart) then
3 return error;
4 insert (elist, tstart, decision, eid, value) in sendTable;
5 get R ∈ dataTable : R.elist = elist ∧ R.tstart = tstart ∧ R.decision = decision;
6 if (R = ⊥) then
7 R := (get tag(), elist, tstart, decision, ⊥); insert R in dataTable;
8 return R.tag;

9 When clock() = rounds × Ts {broadcast routine}
10 repeat
11 broadcast(sendTable);
12 until Od + 1 times
13 sendTable := ⊥; rounds := rounds + 1;

14 When clock() = roundr × Tr {receive routine}
15 while read(M) 6= error do
16 for all (elist, tstart, decision, eid, value) ∈ M.sendTable do
17 get R∈dataTable : R.elist = elist ∧ R.tstart = tstart ∧ R.decision = decision;
18 if (R = ⊥) then
19 R := (get tag(), elist, tstart, decision, ⊥); insert R in dataTable;
20 insert value in R.vtable;
21 roundr := roundr + 1;

22 When entity calls TTCB decide(eid, tag) {decide routine}
23 get R ∈ dataTable : R.tag = tag;
24 if (R6=⊥) and [(clock()>R.tstart+Tagreement) or (all entities proposed a value)] then
25 return (calculate result using function R.decision and values in R.vtable);
26 else
27 return error;
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The constants in the formula have the following meaning: Ts and Tr are respectively
the send and receive periods; WCETsend and WCETreceive are respectively the send and
receive routines worst execution times; Tsend is the maximum communication delay; π is
the precision of the clock synchronization algorithm.

4.1.2 Reliable Broadcast Protocol of the Agreement Service

In the Agreement Service protocol in Protocol 1, if a local TTCB crashes during
the broadcast, some local TTCBs may receive the message while others may not. Such
an inconsistency can lead to different local TTCBs giving different results to one or more
agreements. Therefore, informally, when the sender crashes, the broadcast must either
deliver the message to all recipients or to none. Such a broadcast is usually called a
Reliable Broadcast and this section describes such a protocol. If we replace Lines 10-12
and 15 in Protocol 1 by this protocol, the Agreement Service protocol becomes tolerant to
local TTCB crashes. The second condition in Line 24 has also to be substituted by: “all
entities in non-crashed local TTCBs proposed a value”. The complete protocol is shown
in [26].

This section presents a time-triggered Timely Reliable Broadcast that tolerates
crashes, assumes channel omissions (Abstract Network property AN3), and is lightweight,
in the sense that it does not retransmit messages. A timely reliable broadcast is formally
defined in terms of two primitives R-broadcast (M) and R-deliver (M), where M is the
message, that verify the following properties (based on [36]):

Validity. If a correct local TTCB R-broadcasts M then it eventually R-delivers
M .

Agreement. If a correct local TTCB R-delivers message M then all correct local
TTCBs eventually R-deliver M .

Integrity. For any message M , a correct local TTCB R-delivers M at most once
and only if M was R-broadcast by sender (M).

Timeliness. There is a known constant Tbroadcast such that, if a message is R-
broadcast at instant t, then no correct local TTCB R-delivers M after t + Tbroadcast.

The protocol is shown in Protocol 2. The broadcast routine is similar to the Agree-
ment Service protocol. Every Ts a message M is broadcasted Od + 1 times to tolerate
omissions in the channel. The message is broadcasted even if there is no data to be sent.
This is important for the protocol to work properly and for the detection of local TTCB
crashes (a local TTCB is known to be crashed if a message is not received by its dead-
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Protocol 2 Timely reliable broadcast protocol.
1 When clock() = rounds × Ts {broadcast routine}
2 sender := my id(); seq := rounds;
3 M := (sender, seq, higherseqVector, data);
4 repeat
5 broadcast(M);
6 until Od + 1 times
7 rounds := rounds + 1;

8 When clock() = roundr × Tr {receive routine}
9 while read(M) 6= error do

10 for all M-ndlv in notDelivered do
11 if [(M-ndlv.sender = M.sender) and (M-ndlv.number < M.number)] or (M-ndlv.number <

M.higherseqVector[M-ndlv.sender]) then
12 R-deliver(M-ndlv.data); remove M-ndlv from notDelivered;
13 if (higherseqVector[M.sender] > M.number) then
14 R-deliver(M.data);
15 else
16 put M in notDelivered; higherseqVector[M.sender] := M.number;
17 roundr := roundr + 1;

line [20]). The message has an header with the sender identifier, a sequence number and
the table higherseqVector. This table has an entry for every local TTCB that contains,
for every other local TTCB, the highest sequence number of a message received from that
local TTCB. The receive routine starts by reading a message M (Lines 8-17). Copies
of messages already received are discarded by the function read. For every message re-
ceived the routine does two things: (1) tests if previously received but not R-delivered
messages (stored in notDelivered) can be R-delivered (Lines 10-12); (2) tests if M can
be R-delivered (Lines 13-16).

Considering AN6, the protocol tolerates Bd local TTCB crashes in a reference
interval of time. A message can be R-delivered by a local TTCB when it knows that
all other non-crashed local TTCBs will also R-deliver it (Agreement property). A local
TTCB can R-deliver a message M(s, n) when it receives (a) M(s, n + 1) or (b) M(s′, n′)
with higherseqVector[s]=n+1 (s is the sender and n the message number). The intuition
behind this is: if s crashes during the broadcast of M(s, n+1) but at least one local TTCB
receives the message, then at least Bd local TTCBs receive it (AN6) and at most other
Bd− 1 can crash (the protocol tolerates Bd crashes). Therefore, at least one correct local
TTCB receives M(s, n + 1) and broadcasts M(s ′, n ′) with higherseqVector[s]=n+1 to
the other non-crashed local TTCBs. Since messages are broadcast Od + 1 times, all non-
crashed local TTCBs either receive M(s, n+1) or M(s ′, n ′) and R-deliver M(s, n). In the
protocol, Line 11 tests this condition. However, it considers that any M(s, n+) with n+ > n

causes M(s, n) to be R-delivered, since the Abstract Network does not guarantee the order
of the reception of messages. The same is true for M(s ′, n ′) with higherseqVector[s]

> n. Line 13 checks if the message received, M(s ′′, n ′′), can be R-delivered immediately.
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This is the case if a message from the same sender but with a higher number was received
previously, i.e., if higherseqVector[s ′′] > n ′′.

We proved these results and also that the protocol R-delivers a message M within
Tbroadcast of R-broadcast(M) (the meaning of the constants is the same as before) [26]:

Tbroadcast = 2× (WCETsend + Tsend + Tr + WCETreceive + Ts) + π (4.2)

The Agreement Service termination instant is related to Tbroadcast [26]:

Tagreement = Ts + Tbroadcast (4.3)
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5 Middleware Protocols

5.1 Multipoint Network

In this section, we will identify the protocols that compose the services defined
Section 3.1.

5.1.1 Internet Protocol

For IP, the two most used protocols are the UDP [53] and TCP [56], which are
standard and widely used protocols. Therefore, we will not include a definition of these
protocols here.

5.1.2 IP Multicast

In order for IP Multicast to fully work, hosts must support some kind of manage-
ment for group membership. This is accomplished using the Internet Group Management
Protocol (IGMP). This protocol is used by IP hosts to report their host group memberships
to any immediately-neighboring multicast router.

The way the protocol works is by defining two types of IGMP messages: Host
Membership Query (Queries) and Host Membership Report (Reports). Multicast routers
send Queries to discover which host groups have members on their attached local networks.
These Queries are sent to the special group address 224.0.0.1, which includes all hosts that
implement IP multicast in the local network. The hosts respond by generating Reports,
containing each host group to which they belong on the network interface at which the
Query was received. In fact, to reduce the total number of Reports received and to avoid
congestion, when a host receives a Query, it starts a report delay timer for each of its
group memberships. Each timer is set to a different, randomly chosen value between 0
and 10 seconds. It only sends the Report when the timer expires, with the destination
address of the host group being reported (with a time-to-live of 1), so that other members
of the same group on the same interface can receive the Report as well. If a host receives
a Report for a group to which it belongs, it stops its timer delay for its own Report for
that group and does not generate the Report. So, in general, only one Report per host
group is generated inside a local network. This works because multicast routers receive all
IP multicast datagrams, and need not be addressed explicitly and also because the routers
need not know which hosts belong to a group, they only need to know that there is at least
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one member of the group on a particular network.

5.1.3 IPSec

As explained above, IPSec uses two traffic security protocols: Authentication Header
(AH) and Encapsulation Security Payload (ESP). A definition of these protocols is found
in [39] and [40], respectively. These protocols, on their hand, use known protocols to per-
form the security functions they provide. In the AH, IPSec may use Keyed-Hashing for
Message Authentication (HMAC) [42] with Message-Digest Algorithm (MD5) or with Se-
cure Hash Algorithm (SHA-1) [50]. In ESP, IPSec may use also the two above algorithms
for authentication or the Data Encryption Standard (DES) [51] in Cipher Block Chaining
Mode (CBC), which is applicable to several encryption algorithms and for which a general
description is given in [64], to perform encryption. Since encryption (confidentiality) and
authentication are optional, the algorithm for authentication and for encryption may be
“NULL”, although they can not both be “NULL”.

5.1.4 Internet Control Message Protocol

This protocol uses different types of messages to perform a set of actions. The
following table presents the different ICMP messages, with its corresponding type, as
stated in RFC 792 [54]:

Code Type

0 Echo Reply

3 Destination Unreachable

4 Source Quench

5 Redirect

8 Echo

11 Time Exceeded

12 Parameter Problem

13 Timestamp

14 Timestamp Reply

15 Information Request

16 Information Reply

Table 5.1: Summary of ICMP messages.
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5.1.5 Simple Network Management Protocol

This section defines the AgentX Framework, which is, we believe, very important
in extending existing SNMP agents. This definition is taken from [29].

Within the SNMP framework, a managed node contains a processing entity, called
an agent, which has access to management information.

Within the AgentX framework, an agent is further defined to consist of

• a single processing entity called the master agent, which sends and receives SNMP
protocol messages in an agent role (as specified by the SNMP version 1 and version
2 framework documents) but typically has little or no direct access to management
information.

• 0 or more processing entities called subagents, which are ”shielded” from the SNMP
protocol messages processed by the master agent, but which have access to manage-
ment information.

The master and subagent entities communicate via AgentX protocol messages, as
specified in [29] . While some of the AgentX protocol messages appear similar in syntax
and semantics to the SNMP, bear in mind that AgentX is not SNMP.

The internal operations of AgentX are invisible to an SNMP entity operating in
a manager role. From a manager’s point of view, an extensible agent behaves exactly
as would a non-extensible (monolithic) agent that has access to the same management
instrumentation.

This transparency to managers is a fundamental requirement of AgentX, and is
what differentiates AgentX subagents from SNMP proxy agents.

5.1.5.1 AgentX Roles

An entity acting in a master agent role performs the following functions:

• Accepts AgentX session establishment requests from subagents.

• Accepts registration of MIB regions by subagents.

• Sends and accepts SNMP protocol messages on the agent’s specified transport ad-
dresses.
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• Implements the agent role Elements of Procedure specified for the administrative
framework applicable to the SNMP protocol message, except where they specify
performing management operations. (The application of MIB views, and the access
control policy for the managed node, are implemented by the master agent.)

• Provides support for the MIB objects defined in RFC 1907 [17], and for any MIB
objects relevant to any administrative framework it knows.

• Forwards notifications on behalf of subagents.

An entity acting in a subagent role performs the following functions:

• Initiates an AgentX session with the master agent.

• Registers MIB regions with the master agent.

• Instantiates managed objects.

• Binds OIDs within its registered MIB regions to actual variables.

• Performs management operations on variables.

• Initiates notifications.

5.2 Communications Support

In this section we explain how the communications services described in Section 3.2
are realized. We provide two implementations for these services, one that assumes a com-
pletely asynchronous model and another that assumes an asynchronous model for the
payload system and takes advantage of the support provided by the TTCB.

5.2.1 Asynchronous Communication Protocols

In this section we shall give technical descriptions of how the communications ser-
vices described in Section 3.2 are realized in the simple asynchronous system model. There
are two levels on which this bears examination, that of the over-all architecture of the
MAFTIA group communications middleware – the various interactions between different
protocol components as well as between MAFTIA protocols and other elements both above
and below on the protocol stack – and the precise algorithmic details of the individual pro-
tocols themselves.
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As described above in §3.2, the basic group communications primitives provided by
MAFTIA middleware are realized by the three classes Agreement, Broadcast and Stream.
These classes are extended to form the particular implementations of all individual pro-
tocols, while in turn they all extend the class Protocol which carries basic information
pertinent to all MAFTIA middleware group communications protocol types.

An overview of these classes and their relationships is shown in Figure 5.1.

This figure shows the Java class hierarchy; another important aspect of the overall
architecture is the logical dependency of protocols upon one another (partially reflected in
the Appia protocol stack as well), which is depicted in Figure 5.2.

We should mention that an important additional piece of infrastructure used in
many of these class is provided by the classes ThresholdCoin and ThresholdSignature, which
implement threshold cryptographic services of the same names.

Moving now to the algorithms themselves, we first note certain conventions that we
will always follow:

1. n and t < n/3 are the number of members of the group and the number of permissible
corrupted servers, respectively. The groups members will be named P1, . . . , Pn.

2. All information about the group context is fixed. In particular, we will not explicitly
name the group with a groupID.

3. Messages from Pi to Pj are always presumed to be of the form (protocolID, i, j, payload),
so that when specifying the message, we will often give only the payload ; the values
of protocolID, i and j are implied by the context.

4. Network messages are also presumed to be MACed, and thus the implicit i and j in
such a message cannot be spoofed when both i and j are honest.

5. When a protocol invokes a sub-protocol, it will be often be described as “tagged” with
some additional data: this means that the protocolID of the sub-protocol is formed
by that of the the ambient protocol with the additional data appended in some
unambiguous fashion. Of course, the groupID of the sub-protocol will be identical to
that of its parent.

6. Similarly, a threshold coin or other named cryptographic operation will be described
as “tagged” with certain data when we wish to indicate that the input of that cryp-
tographic function is to be protocolID, groupID and extra data all concatenated un-
ambiguously.

7. In protocol descriptions, messages are sent between participants, or between the ap-
plication and the protocol itself, often with some functional label in this font, such
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byte{} receive()

boolean canReceive()

Stream

void send()

boolean canSend()

void close()

boolean isClosed()

void waitDone()

static byte[] encrypt()

AtomicStream

SecureAtomicStream

ReliableStream

ConsistentStream

Protocol

void abort()

Agreement

byte[] decision()

ArrayAgreement

byte[] negotiate()

ReliableBroadcastBroadcast

int getSender()

void send()

byte{} receive()

boolean canReceive()

ValidatedAgreement

boolean negotiate()

boolean decision()

byte[] getProof()

BinaryAgreement

boolean negotiate()

boolean decision()

ConsistentBroadcast

Negotiable negotiate()

void propose()

boolean canDecide()

Negotiable decisionNegotiable()

VerifiableConsistentBroadcast

byte[] getClosing()

void deliverClosing()

static byte[] getPayloadFromClosing()

static boolean isValidClosing()

void closeWait()

Figure 5.1: Communications services for static groups, class overview

81



Atomic Broadcast

Secure Causal Atomic Broadcast

Broadcast
Primitives Agreement

Binary 

Multi-valued Agreement

Threshold Cryptography

Reliable Point-to-Point Links

Figure 5.2: Communications services for static groups, logical hierarchy

as “a pre-process message” in binary Byzantine agreement. These labels are to be
translated into disambiguating numerical values which are unique also among differ-
ent protocols: for example, there should be no confusion between deliver messages
in the several protocols which have such messages.

5.2.1.1 Binary Byzantine Agreement

This is the ABBA protocol from [10]. It uses an (n, n − t, t) threshold signature
scheme S and an (n, t + 1, t) threshold signature scheme S0, as well as an (n, n − t, t)
threshold coin-tossing scheme (see [10] for explanations of these cryptographic parameters).
We will let F (C) denote the value of coin with tag C.

Since the protocol is somewhat involved, we first give an overview. For a given
instance of the protocol, each party Pi has an initial value Vi ∈ {0, 1}, and the protocol
proceeds in rounds r = 1, 2, . . . The first round starts with a special pre-processing step:

0. Each party sends its initial value to all other parties signed with an S0-signature
share. On receiving 2t + 1 such votes, each party combines the signature shares of
the value with the simple majority (i.e., at least t + 1 votes) to a threshold signature
of S0. This value will be the value used in the first pre-vote.

After that, each round contains four basic steps:

1. Each party casts a pre-vote for a value b ∈ {0, 1}. These pre-votes must be justified
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by an appropriate S-threshold signature, and must be accompanied by a valid S-
signature share on an appropriate message.

2. After collecting n−t valid pre-votes, each party casts a main-vote v ∈ {0, 1, abstain}.
As with pre-votes, these main-votes must be justified by an appropriate S-threshold
signature, and must be accompanied by a valid S-signature share on an appropriate
message.

3. After collecting n− t valid main-votes, each party examines these votes. If all votes
are for a value b ∈ {0, 1}, then the party decides b, but continues to participate in
the protocol for one more round. Otherwise, the party proceeds.

4. The value of coin tagged with r is revealed, which may be used in the next round.

We now proceed with the details of the protocol, shown as Protocol 3.

A crucial part is played here by cryptographic justifications of many of the messages,
which prove that the sender had in her possession sufficiently many appropriate prior
messages from other protocol participants. These justifications are formed as follows:

Pre-vote justification: In round r = 1, party Pi’s pre-vote is the majority of the pre-
processing votes from the pre-processing step. There must be at least t + 1 votes for the
same value b ∈ {0, 1}. For the justification, a party selects t + 1 such votes, and combines
the accompanying S0-signature shares to obtain an S0-threshold signature on the message
(pre-process, b). In rounds r > 1, a pre-vote for b may be justified in two ways:

• either with an S-threshold signature on the message (pre-vote, r−1, b); we call this
a hard pre-vote for b;

• or with an S-threshold signature on the message (main-vote, r− 1, abstain) for the
pre-vote b = F (r − 1); we call this a soft pre-vote for b.

Intuitively, a hard pre-vote expresses Pi’s preference for b based on evidence for preference
b in round r − 1, whereas a soft pre-vote is just a vote for the value of the coin, based
evidence of conflicting votes in round r−1. The threshold signatures are obtained from the
computations in previous rounds (see below). We assume that the justification indicates
whether the pre-vote is hard or soft.

Main-vote justification: A main-vote v in round r is one of the values {0, 1, abstain}
and, like pre-votes, accompanied by a justification as follows:
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Protocol 3 Binary Byzantine agreement with ABBA
1 Pre-processing:
2 generate an S0-signature share on the message (pre-process, Vi) and send the message

(pre-process, Vi, signature share) to all parties.
3 collect 2t + 1 proper pre-processing messages
4 for round r = 1, 2, . . . do
5 Pre-vote:
6 if r = 1 then
7 let b be the simple majority of the received pre-processing votes
8 else
9 select n− t properly justified main votes from round r − 1 and let

b =





0 if there is a main-vote for 0,

1 if there is a main-vote for 1,

F (r − 1) if all main-votes are abstain.

10 produce an S-signature share on the message (pre-vote, r, b)
11 produce the corresponding justification (see text)
12 send the message (pre-vote, r, b, justification, signature share) to all parties.

13 Main-vote:
14 collect n− t properly justified round-r pre-vote messages and let

v =





0 if there are n− t pre-votes for 0,

1 if there are n− t pre-votes for 1,

abstain if there are pre-votes for 0 and 1.

15 produce an S-signature share on the message (main-vote, r, v)
16 produce the corresponding justification (see text)
17 send the message (main-vote, r, v, justification, signature share) to all parties

18 Check for decision:
19 collect n− t properly justified main-votes of round r
20 if all main votes are for b ∈ {0, 1} then
21 decide for value b but continue one more round up to line 13

22 Common coin:
23 generate a share of the coin with tag r
24 send the message (coin, r, coin share) to all parties
25 collect and combine n− t shares of the coin tagged with r
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• If among the n− t justified round-r pre-votes collected by Pi there is a pre-vote for 0
and a pre-vote for 1, then Pi’s main-vote v for round r is abstain. The justification
for this main-vote consists of the justifications for the two conflicting pre-votes.

• Otherwise, Pi has collected n − t justified pre-votes for some b ∈ {0, 1} in round
r, and since each of these comes with a valid S-signature share on the message
(pre-vote, r, b), Pi can combine these shares to obtain a valid S-threshold signature
on this message. Party Pi’s main-vote v in this case is b, and its justification is this
threshold signature.

5.2.1.2 Validated Binary Byzantine Agreement

It is only necessary to make two small modifications to the above-described pro-
tocol for binary Byzantine agreement in order to extend the functionality with external
validations and bias. First, the justifications used in the pre-votes of round 1 are replaced
by the proofs submitted with protocol invocation, and their correctness is tested by with
the external predicate implemented as the submitted ValidatedNegotiable’s BinargyValida-
tor field validator. The logic of the protocol guarantees that either a decision is reached
immediately or the validations for 0 and for 1 are seen by all parties in the first two rounds;
in either case, the protocol instance can return proof data which validates the value for
which it decides.

Second, the protocol can be biased towards a value b ∈ {0, 1} by modifying the use
of the threshold coin so that in the first round it always appears to have value b.

5.2.1.3 Validated Multi-valued Byzantine Agreement

We describe the protocol VBA from [9] that realizes validated multi-valued Byzan-
tine agreement.

The basic idea of the validated agreement protocol is that every party proposes
its value as a candidate value for the final result. One party whose proposal satisfies the
validation predicate is then selected in a sequence of binary Byzantine agreement protocols
and this value becomes the final decision value. More precisely, the protocol consists of
the following steps:

Echoing the proposal (lines 1–4): Each party Pi broadcasts the value that it pro-
poses to all other parties using verifiable consistent broadcast. This ensures that all honest
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parties obtain the same proposal value for any particular party, even if the sender is cor-
rupted. Then Pi waits until it has received n− t proposals satisfying the external predicate
Q before entering the agreement loop.

Agreement loop (lines 5–20): One party is chosen after another, according to a fixed
permutation Π of {1, . . . , n}. Let a denote the index of the party selected in the current
round (Pa is called the “candidate”). Each party Pi carries out the following steps for Pa:

1. Send a vote message to all parties containing 1 if Pi has received Pa’s proposal
(including the proposal in the vote) and 0 otherwise (lines 6–11).

2. Wait for n − t vote messages, but do not count votes indicating 1 unless a valid
proposal from Pa has been received—either directly or included in the vote message
(lines 12–13).

3. Run a validated binary Byzantine agreement biased towards 1 to determine whether
Pa has properly broadcast a valid proposal. Vote 1 if Pi has received a valid pro-
posal from Pa and validate this by the protocol message that completes the verifiable
broadcast of Pa’s proposal. Otherwise, if Pi has received n − t vote messages con-
taining 0, vote 0; no validation data is needed here. If the agreement decides 1, exit
from the loop (lines 14–20).

Delivering the chosen proposal (lines 21–24): If Pi has not yet delivered the
broadcast by the selected candidate, obtain the proposal from the validation returned by
the Byzantine agreement.

The full validated multi-valued Byzantine agreement protocol is shown as Proto-
col 4.

5.2.1.4 Reliable Broadcast

MAFTIA middleware uses the protocol RBC from [9] (which is a simple adaptation
of work of Bracha [6] to reduce message complexity) for reliable broadcast. This protocol
uses the hash of a payload message as a short, but unique representation for the potentially
much longer message. The idea is that the payload is sent only once by the sender to all
parties. When a party is ready to deliver a payload message but does not yet know it,
it asks an arbitrary subset of 2t + 1 parties for its contents and at least one of them will
answer with the correct value.
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Protocol 4 Validated multi-valued Byzantine agreement with VBA

Let Va(v, ρ) be the following predicate:

Va(v, ρ) ≡ (v = 0) or(
v = 1 and ρ completes the verifiable consistent broadcast of

a message (echo, wa, πa) with tag a such that Q(wa, πa) holds
)

Upon receiving message (propose, w, π):
1 verifiably consistently broadcast message (echo, w, π) tagged with vcbc|i
2 wj ← ⊥;πj ← ⊥ (1 ≤ j ≤ n)
3 wait for n− t messages (echo, wj , πj) to be consistently delivered with tag vcbc|j

from distinct Pj such that Q(wj , πj) holds
4 l ← 0
5 repeat
6 l ← l + 1; a ← Π(l)
7 if wa = ⊥ then
8 send the message (vote, a, 0,⊥) to all parties
9 else

10 let ρ be the message that completes the consisten broadcast with tag vcbc|a
11 send the message (vote, a, 1, ρ) to all parties
12 uj ← ⊥; rj ← ⊥ (1 ≤ j ≤ n)
13 wait for n− t messages (vote, a, uj , ρj) from distinct Pj such

that Va(uj , ρj) holds
14 if there is some uj = 1 then
15 v ← 1; ρ ← ρj

16 else
17 v ← 0; ρ ← ⊥
18 propose v validated by ρ in validated binary Byzantine agreement with tag a

biased towards 1, with predicate Va

19 wait for the agreement protocol to decide some b validated by σ tagged by a
20 until b = 1
21 if wa = ⊥ then
22 use σ to complete the verifiable consistent broadcast with tag vcbc|a

and consistenly deliver (echo, wa, πa)
23 output (wa, πa)
24 halt
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A detailed algorithm is presented as Protocol 5, describing Pi’s actions when the
sender is declared to be j (possibly equalling i). The function H used here is a collision-free
hash function.

Protocol 5 Protocol RBC for reliable broadcast

1 Initialization:
2 m̄ ← ⊥; d̄ ← ⊥
3 ed ← 0; rd ← 0 (d ∈ {0, 1}k′)

4 Upon receiving message (broadcast,m):
5 send (send,m) to all parties

6 Upon receiving message (send,m) from Pl:
7 if j = l and m̄ = ⊥ then
8 m̄ ← m
9 send (echo,H(m)) to all parties

10 Upon receiving message (echo, d) from Pl for the first time:
11 ed ← ed + 1
12 if ed = n− t and rd ≤ t then
13 send (ready, d) to all parties

14 Upon receiving message (ready, d) from Pl for the first time:
15 rd ← rd + 1
16 if rd = t + 1 and ed < n− t then
17 send (ready, d) to all parties
18 else if rd = 2t + 1 then
19 d̄ ← d
20 if H(m̄) 6= d then
21 send (request) to P1, . . . , P2t+1

22 wait for a message (answer,m) such that H(m) = d̄
23 m̄ ← m
24 output (deliver, m̄)

25 Upon receiving message (request) from Pl for the first time:
26 if m̄ 6= ⊥ then
27 send (answer, m̄) to Pl

5.2.1.5 Consistent and Verifiable Consistent Broadcast

These two protocols are in fact identical, the plain consistent broadcast simply does
not provide access to the closing message of a finished instance, nor does it allow the
application layer to deliver such a message “from above”. We therefore show this protocol,
the VCBC protocol from [9], only one time, as Protocol 6. Here again we give Pi’s actions
when the declared sender is j (possibly equalling i) and again H is a collision-free hash
function; the protocol also employs an (n, dn+t+1

2
e, t) threshold signature scheme S.
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In the protocol description, the messages request and answer encode the veri-
fiability extension mechanisms of asking for the closing message from a VerifiableConsis-
tentBroadcast instance or of giving such a message to such an instance; as such, they are
unsupported for bare ConsistentBroadcasts.

Protocol 6 Protocol VCBC for [verifiable] consistent broadcast

1 Initialization:
2 m̄ ← ⊥; µ̄ ← ⊥
3 Wd ← ∅; rd ← 0 (d ∈ {0, 1}k′)

4 Upon receiving message (broadcast,m):
5 send (send,m) to all parties

6 Upon receiving message (send,m) from Pl:
7 if j = l and m̄ = ⊥ then
8 m̄ ← m
9 compute an S-signature share ν with tag (j, ready, H(m))

10 send (ready,H(m), ν) to Pj

11 Upon receiving message (ready, d, νl) from Pl for the first time:
12 if i = j and νl is a valid S-signature share then
13 Wd ← Wd ∪ {νl}
14 rd ← rd + 1
15 if rd = dn+t+1

2 e then
16 combine the shares in Wd to an S-threshold signature µ
17 send (final, d, µ) to all parties

18 Upon receiving message (final, d, µ):
19 if H(m̄) = d and µ̄ = ⊥ and µ is a valid S-signature then
20 µ̄ ← µ
21 output (deliver, m̄)

22 Upon receiving message (request) from Pl:
23 if µ̄ 6= ⊥ then
24 send (answer, m̄, µ̄) to Pl

25 Upon receiving message (answer,m, µ) from Pl:
26 if µ̄ = ⊥ and µ is a valid S-signature tagged with (j, ready,H(m)) then
27 µ̄ ← µ
28 m̄ ← m
29 output (deliver, m̄)

5.2.1.6 Atomic Broadcast Stream

This is the somewhat involved protocol ABC from [9]; we outline it first for clarity.
In this protocol, each party maintains a FIFO queue of not yet delivered payload messages.
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Messages received to be broadcast are appended to this queue whenever they are received.
The protocol proceeds in asynchronous global rounds, where each round r consists of the
following steps:

1. Send the first payload message w in the current queue to all parties, accompanied by
a digital signature σ in a queue message.

2. Collect the messages of n − t distinct parties and store them in a vector W , store
the corresponding signatures in a vector S, and propose W for Byzantine agreement
validated by S.

3. Perform multi-valued Byzantine agreement with validation of a vector W = [w1, . . . , wn]
and proof S = [σ1, . . . , σn] through the predicate Θr(W,S) which is true if and only
if for at least n − t distinct indices j, the vector element σj is a valid signature on
the tag (queue, r, j, wj) by Pj.

4. After deciding on a vector V of messages, deliver the union of all payload messages
in V according to a deterministic order; proceed to the next round.

The digital signature referred to here is any standard (i.e., non-threshold) secure signature
scheme; below it is sometimes denoted S.

In order to ensure liveness of the protocol, there are actually two ways in which
the parties move forward to the next round: when a party receives a broadcast input
message and when a party receives a queue message of another party pertaining to the
current round. If either of these two messages arrive and contain a yet undelivered payload
message, and if the party has not yet sent its own queue message for the current round, then
it enters the round by appending the payload to its queue and sending a queue message
to all parties.

A detailed description is found in Protocol 7.

The FIFO queue q is an ordered list of values (initially empty). It is accessed using
the operations append, remove, and first, where append(q,m) inserts m into q at the end,
remove(q, m) removes m from q (if present), and first(q) returns the first element in q. The
operation m ∈ q tests if an element m is contained in q.

A party waiting at the beginning of a round simultaneously waits for broadcast

and queue messages containing some w 6∈ d in line 2. If it receives a broadcast request,
the payload m is appended to q. If only a suitable queue protocol message is received, the
party makes w its own message for the round, but does not append it to q.

The protocol in Protocol 7 is formulated using a single loop that runs forever after
initialization; this is merely for syntactic convenience and can be implemented by decom-
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Protocol 7 Protocol ABC for atomic broadcast
Let Θr(v, ρ) be the following predicate:

Θr([w1, . . . , wn], [σ1, . . . , σn]) ≡ (
for at least n− t distinct j, σj is a valid

S-signature by Pj on tag (queue, r, j, wj).
)

Initialization:
q ← [] {FIFO queue of messages to broadcast}
d ← ∅ {set of delivered messages}
r ← 0 {current round}

Upon receiving message (broadcast,m):
if m 6∈ d and m 6∈ q then

append(q,m)

Forever:
1 wj ← ⊥;σj ← ⊥ (1 ≤ j ≤ n)
2 wait for q 6= [] or a message (queue, r, l, wl, σl) received from Pl

such that wl 6∈ d and σl is a valid signature from Pl

3 if q 6= [] then
4 w ← first(q)
5 else
6 w ← wl

7 compute a digital signature σ on (queue, r, i, w)
8 send the message (queue, r, i, w, σ) to all parties
9 wait for n− t messages (queue, r, j, wj , σj) such that σj is a valid

signature from Pj (including the message from Pl above)
10 W ← [w1, . . . , wn];S ← [σ1, . . . , σn]
11 propose W validated by S for multi-valued validated Byzantine agreement

with tag r and predicate Θr

12 wait for the validated Byzantine agreement protocol with tag r to decide
upon some V = [v1, . . . , vn]

13 b ← ⋃n
j=1 vj

14 for m ∈ (b \ d), in some deterministic order do
15 output (deliver,m)
16 wait for an acknowledgment
17 d ← d ∪ {m}
18 remove(q, m)
19 r ← r + 1
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posing the loop into the respective message handlers.

5.2.1.7 Secure Causal Atomic Broadcast Stream

We explain the protocol SC-ABC from [9] for secure causal atomic broadcast. To
broadcast a ciphertext c, we simply broadcast c on a fixed atomic broadcast stream. Upon
delivery of a ciphertext c via this sub-stream, a party schedules c. Then it computes a
decryption share δ and sends this to all other parties in an decrypt message containing c. It
waits for t+1 decrypt messages pertaining to c. Once they arrive, it recovers the associated
cleartext and delivers c to the application. After receiving the acknowledgment, the party
continues processing the next atomic broadcast delivery by generating the corresponding
acknowledgment. Encryption and decryption here refer to a fixed (n, t + 1)-threshold
cryptosystem (denoted E below). The details are in Protocol 8. For ease of notation, the

Protocol 8 Protocol SC-ABC for secure causal atomic broadcast
Initialization:

open an atomic broadcast stream A tagged with scabc

Upon receiving (broadcast, c):
broadcast c on the stream A

Forever:
1 wait for the next message c that is delivered on the stream A.
2 compute a tagged E-decryption share δ for c
3 output (schedule, c)
4 send the message (decrypt, c, δ) to all parties
5 δj ← ⊥ (1 ≤ j ≤ n)
6 wait for t + 1 messages (decrypt, c, δj) from distinct parties that contain valid

tagged decryption shares for c
7 combine the decryption shares δ1, . . . , δn to obtain a cleartext m
8 output (reveal,m)
9 wait for an acknowledgment

10 acknowledge the last message delivered on A

protocol in Protocol 8 is formulated using a Forever loop; it can be decomposed into the
respective message handlers in straightforward way.

5.2.1.8 Aggregated Broadcast Streams (Reliable and Consistent)

As described above in §3.2, aggregated broadcast streams are built up in a simple
way from the corresponding broadcasts; there is no protocol per se for these streams (and
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hence we shall provide no formal exposition of one). Instead, a new instance of such a
stream starts n simultaneous broadcasts, one for each possible sending party, and waits
for them to deliver their payloads. As soon as one does so, that payload is passed up to
the application layer as the next message on the stream, and a brand new instance of the
lower-level broadcast is immediately created to wait for the next possible message from
that sender. It follows clearly that the order of delivery can vary wildly from participant
to participant, depending upon thread scheduling, but the guarantees of reliability and
consistency extend in the obvious way to the resulting streams.

5.2.2 Asynchronous Communication Protocols with Support from TTCB

This section describes two protocols, Byzantine Reliable Multicast (BRM) and
Byzantine Atomic Multicast (BAM), that were developed using a novel way of design-
ing secure protocols, which is based on a well-founded hybrid failure model. Although
these protocols tolerate arbitrary faults, they do not need to necessarily incur the cost of
“Byzantine agreement”, in number of participants and round/message complexity. They
rely on the existence of the TTCB, where the participants only execute crucial parts of the
protocol operation, under the protection of a crash failure model. Otherwise, participants
follow an arbitrary failure model.

5.2.2.1 Processes and Failures

A process is correct if it always follows the protocol until the protocol completion.
There are several circumstances, however, that might lead to a process failure. For instance,
a process can crash (e.g, due to a power outage) or start to behave maliciously (e.g., produce
wrong results). In an arbitrary failure model, which is the model being considered, no
restrictions are imposed on process failures, i.e., they can fail arbitrarily. A process can
simply stop working, or it can send messages without regard of the protocol, delay or send
contradictory messages, or even collude with other malicious processes with the objective
of breaking the protocol.

From the various reasons that can cause a process to produce incorrect results,
traditionally the most difficult to tolerate is related to attacks made by humans. Once an
attacker takes control of a process, it can make that process behave in any way, and if one
wants to be conservative, one has to assume that it can cause that process behave in the
worse possible manner to the protocol execution. In the rest of this section we will look
into a few examples of attacks that are specific to our architecture, and that might lead to
the failure of the corresponding process.
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A personification attack can be made by a local adversary if it is able to get the
pair (eid, secret), which lets a process communicate securely with the local TTCB. Before
a process starts to use the TTCB, it needs to call the Local Authentication Service to
establish a secure channel with the local TTCB. The outcome of the execution of this
procedure is a pair (eid, secret), where eid is the identifier of the process and secret is a
symmetric key shared with the local TTCB. If an attacker penetrates a host and obtains
this pair, it can impersonate the process before the TTCB and the TTCB before the
process. If this pair is kept secret, the attacker can only try to disrupt or delay the
communication between the process and the local TCCB – personification attacks are
prevented.

Another personification attack is possible if the attacker obtains the symmetric keys
that a process shares with other processes. In this case, the attacker can forge some of the
messages sent between processes. Most of the messages transmitted by the protocol being
proposed do not need to be authenticated and integrity protected because corruptions and
forgeries can be detected with the help of the TTCB. The only exception happens with the
acknowledgments sent by the protocol, where it is necessary to add a vector of message
authentication codes. A successful attack to a host and subsequent disclosure of the shared
keys of a process, allows an attacker to falsify some acknowledgements. If the keys can be
kept secret, then the attacker can only disrupt or delay the communication, in the host or
the network.

A denial of service attack happens if an attacker prevents a process from exchanging
data with other processes by systematically disrupting or delaying the communication.
In asynchronous protocols typically it is assumed that messages are eventually received
(reliable channels), and when this happens the protocol is able to make progress. To
implement this behavior processes are required to maintain a copy of each message and
to keep re-transmitting until an acknowledgement arrives (which might take a long time,
depending on the failure). Here we decided to take a different approach: if an attacker
can systematically disrupt the communication of a process, then the process is considered
failed as soon as possible, otherwise the attacker will probably disturb the communication
long enough for the protocol to become useless. For example, if the payment system of
an e-store is attacked and an attempt of paying an item takes 10 hours (or 10 days) to
proceed, that is equivalent to a failure of the store.

In channels with only accidental faults it is usually considered that no more than Od

messages are corrupted/lost in a reference interval of time. Od is the omission degree and
tests can be made in concrete networks to determine Od with any desired probability [72].
If a process does not receive a message after Od + 1 retransmissions from the sender, with
Od computed considering only accidental faults, then it is reasonable to assume that either
the process crashed, or an attack is under way. In any case, we will consider the receiver
process as failed. The reader, however, should notice that Od is just a parameter that will
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be used in the protocol. If Od is set to a very high value, then our protocol will start to
behave like the protocols that assume reliable channels.

Note that the omission degree technique lies on a synchrony hypothesis: we ‘detect’
omissions if a message does not arrive after a timeout longer than the ‘worst-case delivery
delay’ (the hypothesis). Furthermore, we ‘detect’ crash if the omission degree is exceeded.
In our environment (since it is asynchronous, bursts of messages may be over-delayed,
instead of lost) this artificial hypothesis leads to forcing the crash of live but slow (or
slowly connected) processes. There is nothing wrong with this, since it allows progress
of the protocol, but this method is subject to inconsistencies if failures are not detected
correctly [24].

Another advantage of considering systematically delayed processes as failed is re-
lated with the implementation of the TTCB. Since the TTCB is a small component, it can
only keep the results of the agreement service for a limited time. If a delayed process asks
for a result after it expired the simplest thing to do is to consider the process as failed.
Alternatively, the protocol could be made more complex to recover from this situation.
However, there is no much justification in doing so for the reason pointed earlier – if a
process is too late it is useless.

5.2.2.2 Protocol Definition and Properties

In each execution of a multicast there is one sender process and several recipient
processes. A message transmitted to a group should be delivered to all member processes
(with the limitations mentioned below), including the sender. In the case of BAM, assur-
ances must be provided about the order of message delivery. Each process, in BAM, must
deliver its messages in a same order. In the rest of the document, we will make the classical
separation of receiving a message from the network and delivering a message – the result
of the protocol execution.

Informally, a reliable multicast protocol enforces the following [7]: 1) all correct
processes deliver the same messages, and 2) if a correct sender transmits a message then
all correct processes deliver this message. For atomic multicast, total order must be added
in the first assertive. These rules do not imply any guarantees of delivery in case of a
malicious sender. However, one of two things will happen, either the correct processes never
complete the protocol execution and no message is ever delivered, or if they terminate, then
they will all deliver the same message. No assumptions are made about the behavior of
the malicious (recipient) processes. They might decide to deliver the correct message, a
distinct message or no message.

Formally, a reliable multicast protocol has the following properties [36]:
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• Validity: If a correct process multicasts a message M, then some correct process in
group(M ) eventually delivers M.

• Agreement: If a correct process delivers a message M, then all correct processes in
group(M ) eventually deliver M.

• Integrity: For any message M, every correct process p delivers M at most once, and
only if p is in group(M ), and if sender(M ) is correct then M was previously multicast
by sender.

For atomic multicast, the following properties are included:

• FIFO order: If a correct process broadcasts a message M before it broadcasts a
message M’, then no correct process delivers M’, unless it has previously delivered
M.

• Total order: If correct processes p and q both deliver messages M and M’, then p
delivers M before M’ if and only if q delivers M before M’.

These properties place no restriction on the messages delivered by faulty processes.
However, as stated in [Hadzilacos94], uniform versions of these properties are only possible
for benign failures, thus, in an arbitrary failures model, uniformity is a meaningless concept.

5.2.2.3 The BRM-M Protocol

The Byzantine Reliable Multicast BRM-M protocol is executed in two phases. In
the first one, the sender multicasts the message one time to the recipients, and then it
securely transmits an hash code through the TTCB agreement service. This hash code is
used by the receivers to ensure the integrity and authenticity of the message. If there are
no attacks and no congestion in the network, with high probability the message is received
by all recipients, and the protocol can terminate immediately. Otherwise, it is necessary to
enter the second phase. Here, processes retransmit the message until either a confirmation
arrives or the Od + 1 limit is reached. Each multicast is performed at most Od + 1 times
in order to tolerate omissions due to accidental faults (see Section 5.2.2.1).

Figure 9 shows an implementation of the protocol. A message consists of a tuple
with the following fields (type, sender, elist, tstart, data). type indicates if it is a data mes-
sage (DAT) or an acknowledgement (ACK). sender is the identifier of the sender process,
and data is either the information given by the application or a vector of MACs (see be-
low). elist is a list of eid with the format accepted by the TTCB agreement service. The
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first element of the list is the eid of the sender, the others are the eid of the receivers.
tstart is the timestamp that will be given to the agreement service. Each execution of the
protocol is identified by (elist, tstart). The protocol uses two low level read primitives,
one that only returns when a new message is available, read blocking(), and another that
returns immediately either with a new message or with a non-valid value (⊥) to indicate
that no message exists, read non blocking(). These two primitives only read messages
with the same value of (elist, tstart) which correspond to a given instance of the protocol
execution. Other values of the pair are processed by other instances of the protocol. We
assume that there is a garbage collector that throws away messages for instances of the
protocol that have already finished running (e.g., delayed message retransmissions). This
garbage collector can be constructed by keeping in a list the identifiers of the messages
already delivered and comparing the identifiers of the arriving messages.

With the exception of the beginning, the code presented in the figure is common
both to the sender and the recipients. If the process is a sender, it constructs and multicasts
the message to the receivers (Lines 3-4). tstart is set to the current time plus a delay T1.
T1 should be proportional to the average message transmission time, i.e., it should be
calculated in such a way that there is a reasonable probability of message arrival before
tstart. In practice, the value of tstart is a tradeoff: if it is too large, the first phase may take
longer than what is required; if the value is too small, a correct recipient may not receive
the message before tstart and the second phase will have to be executed unnecessarily (i.e.,
the opportunity to terminate the protocol early is lost).

Recipient processes start by blocking, waiting for a message arrival (Line 6). De-
pending on whether there are or not message losses, the received message might be of type
DAT or ACK, or a corrupted message with the fields (elist, tstart) correct. The variable
n-sends contains the number of messages multicasted and is set initially to 1 for the sender
and to 0 to the recipients (Lines 4 and 6). Next, both sender and recipients propose the
hash of the message, H(M), to the agreement service (M is the message transmitted by
the sender, or the first message received by the recipient), and then they block waiting
for the result of the agreement (Line 7-8). The decision function used by the protocol is
called TTCB TBA RMULTICAST . This function selects as the result of the agreement
the value proposed by the first process in elist, which in our case is the sender. An hash
function is basically a one-way function that compresses its input and produces a fixed
sized digest (e.g., 128 bits for MD5). It is assumed that an attacker is unable to subvert
the cryptographic properties of the hash function, such as weak and strong collision resis-
tance [44]. Since the system is asynchronous, there is always the possibility, although highly
improbable, that the sender experiences some delay and it tries to propose after tstart.
In this case, TTCB propose will return the error TTCB TSTART EXPIRED and the
sender process should abort the multicast, and the application can retry the multicast later
(for simplicity this condition is omitted from the code). If all processes proposed the same
hash of the message, all can deliver and terminate (Line 9). Recall that field proposed-ok
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Protocol 9 BRM-M Sender and Recipient protocol.

1 {——— Phase 1 ———}
2 if I am the sender then {SENDER process}
3 M := (DAT, my-eid, elist, TTCB getTimestamp() + T1, data);
4 multicast M to elist except sender; n-sends := 1;
5 else {RECIPIENT processes}
6 read blocking(M); n-sends := 0;
7 propose := TTCB propose(M.elist, M.tstart, TTCB TBA RMULTICAST, H(M));
8 repeat
9 decide := TTCB decide(propose.tag);

10 until (decide.error = TTCB TBA ENDED);
11 if (decide.proposed-ok contains all recipients) then
12 deliver M; return;

13 {——— Phase 2 ———}
14 M-deliver := ⊥;
15 mac-vector := calculate macs of (ACK, my-eid, M.elist, M.tstart, decide.value);
16 M-ack := (ACK, my-eid, M.elist, M.tstart, mac-vector);
17 n-acks := 0; ack-set := eids in decide.proposed-ok;
18 t-resend := TTCB getTimestamp();
19 repeat
20 if (M.type = DAT) and (H(M) = decide.value) then
21 M-deliver := M;
22 ack-set := ack-set ∪ {my-eid};
23 if (my-eid /∈ decide.proposed-ok) and (n-acks < Od+1) then
24 multicast M-ack to elist except my-eid; n-acks := n-acks + 1;
25 else if (M.type = ACK) and (M.mac-vector[my-eid] is ok) then
26 ack-set := ack-set ∪ {M.sender};
27 if (M-deliver 6= ⊥) and (TTCB getTimestamp() ≥ t- resend) then
28 multicast M-deliver to elist except (sender and eids in ack- set);
29 t-resend := t-resend + Tresend; n-sends := n-sends + 1;
30 read non blocking(M); {sets M = ⊥ if there are no messages to be read}
31 until (ack-set contains all recipients) or (n-sends ≥ Od+1);
32 deliver(M-deliver);
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Figure 5.3: Example execution of the BRM-M protocol (best case scenario).

indicates which processes proposed the same value as the one that was decided, i.e., H(M).
Figure 5.3 illustrates an execution where processes terminate after this first phase of the
protocol. Notice in the figure that the TTCB agreement is initiated immediately after all
processes have proposed their value and not by tstart.

The second phase is executed if for some reason one or more processes did not
propose the hash of the correct message by tstart. Variable M- deliver is used to store the
message that should be delivered, and is initialized to a value outside the range of messages
(Line 11). The protocol utilizes message authentication codes (MAC) to protect ACK
messages from forgery [44]. This type of signature is based on symmetric cryptography,
which requires a different secret key to be shared between every pair of processes. Even
though, MACs are not as powerful as signatures based on asymmetric cryptography, they
are sufficient for our needs, and more importantly, they are several orders of magnitude
faster to calculate. Since ACKs are multicasted to all processes, an ACK does not take
a single MAC but a vector of MACs, one per each pair (sender of ACK, other process in
elist) [21]. A MAC protects the information contained in the tuple (ACK, my-eid, M.elist,
M.tstart, decide.value), and is generated using the secret key shared between each pair of
processes (Lines 12-13). Next, processes initialize variables n-ack and ack-set (Line 14).
The first one will count the number of ACKs that have been sent. The second one will
store the eid of the processes that have already confirmed the reception of the message,
either by proposing the correct H(M) to the agreement (Line 14) or with an acknowledge
message. t-resend indicates the instant when the next retransmission should be done (Line
15). It is initialized to the current time, which means that there will be retransmission as
soon as possible.

The loop basically processes the arriving messages (Lines 17-23), does the periodic
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retransmissions (Lines 24-26), and reads new messages (Line 27). If the message is of type
DAT and its hash is the same as the one given by the sender (Line 17) then it is saved
for later delivery (Line 18). Next, the eid of the process is added to ack-set to indicate
that this process has correctly received the message (Line 19). If the process received the
message but did not propose the correct hash to the agreement then it needs to confirm
the reception by multicasting an ACK (Line 20-21). The ACKs, like the DAT messages,
are only transmitted Od + 1 times. If the received message is an ACK with a valid MAC,
then the eid of the sender is put in ack-set (Line 22-23). Next, if it is time, the message is
retransmitted to the processes that did not confirm the reception (Lines 24-26). The loop
goes on until Od + 1 messages are sent or all recipients acknowledged the reception of the
message (Line 28). To complete the protocol, the process delivers the message.

As mentioned in Section 5.2.2.2, there are situations where the protocol does not
terminate if the sender is malicious or the process is failed. For instance, a malicious sender
could propose a false hash of the message, and in this case no correct recipients would be
able to deliver the message. To address this problem, a garbage collection mechanism
has to prevent correct processes from being clogged with protocol instances that never
terminate. This mechanisms should interact with the membership service to determine
and remove instances waiting for faulty processes.

P 1

P 3
P 2

P 4

T T C B

B R M u l t i c a s t - M

T T C B  A g r e e m e n t
S e r v i c e

t s t a r t t s t a r t  +  T a g r e e m e n t

T a g r e e m e n t O m i s s i o n  D e g r e e  ( O d )  =  1
-  L o s t  m e s s a g e
-  D e l i v e r y

T T C B _ p r o p o s e ( H ( M ) )

T T C B _ d e c i d e ( H ( M ) ) -  D A T
-  A C K

Figure 5.4: Example execution of the BRM-M protocol.

Example of an Execution

Figure 5.4 represents an execution of the protocol. The sender multicasts the mes-
sage once, P2 receives it in time to propose H(M), P3 receives the message late and P4
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does not receive. When the agreement terminates all processes except P4 have the mes-
sage and get the result from the TTCB (P4 does not even know that the protocol is being
executed). At this point, by observing the result of the agreement, all become aware that
only P1 and P2 proposed the hash. Therefore, both P1 and P2 multicast the message to
P3 and P4. P3 multicasts an ACK to all processes confirming the reception and sends
the message to P4. P1 terminates at this moment because it has already sent the message
Od + 1 times. The first message P4 receives is the ACK sent by P3. P4 saves it in ack-set
and gets the result of the agreement. Then it receives the right message, and multicasts
an ACK. At this moment all processes terminate.

5.2.2.4 Overview of the BAM Protocol

The BAM protocol achieves intrusion-tolerance using BRM to multicast messages
in a reliable and secure manner. This sub-protocol assures the validity, agreement, and
integrity properties, described in the previous section. BAM is an atomic multicast protocol
for asynchronous systems with a hybrid failure model. The BAM protocol does not need
public key cryptography, since it uses the TTCB to securely exchange a digest of the
message.

�

�

����
�

����

�����	
���
�

����������	������	
���

����������		�
�

��
��
����		�
�
�

����
�����
�������
����	���
�������

�

��
��
��
��

�����������

��� �	��

�����	������	
���

�

Figure 5.5: Communication services with support from TTCB, logical hierarchy.

Figure 5.5 illustrates the composition of layers required to implement the BAM
architecture. Each message delivered by the BRM protocol is inserted in Message-Buffer.
All messages in the Message-Buffer are submitted to the Message Stability Detection
protocol in order to determinate which messages are stable. A message is stable if all
correct processes already have BR-delivered it, i.e., the BRM protocol has delivered the
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message to all correct processes . Unstable messages are put in the Pending-Buffer, waiting
to eventually become stable. In face of malicious processes, the Pending-Buffer is useful to
detect possible attacks of these processes. For example, to detect delayed messages, when
a process p did not receive a message M while all remaining process already received it;
or to detect a malicious process p that says it had send/received an inexistent message
to/from a process q (phantom messages). That information can be useful for the Failure
Detection and Membership Service, for instance, to detect intrusions and remove such
malicious processes from the current view. After Message Stability Detection, the stable
messages can be delivered in some deterministic order (see Figure 5.5). Adopting the
modular specification presented in [36], we provide two ways to atomically deliver M :

• Byzantine Atomic Multicast: is a Reliable Multicast that satisfies Total Order. The
ordering of messages in BAM is based on a timestamp provided by the TTCB.

• Byzantine FIFO Atomic Multicast: is a Reliable Multicast that satisfies both FIFO
and Total Order. FIFO Atomic Multicast is stronger than both Atomic Broadcast
and FIFO Broadcast. In this particular case, the ordering of messages is based on a
timestamp provided by the TTCB and a sequence number.

5.2.2.5 The BAM Protocol

As mentioned in the previous section, the BAM protocol depends on BRM to assure
the validity, agreement, and integrity properties. Every message M multicasted using the
BRM protocol contains the identifier of the sender (eid), timestamp (tstart), and the last
membership view (elist) at the multicast event instant. eid is obtained when a process
starts to use the TTCB, by calling the Local Authentication Service to establish a secure
channel with the local TTCB. tstart is set to the current time plus a delay Td. The current
time is obtained from the Trusted Absolute Timestamping Service, which provides globally
meaningful timestamps. The elist is provided by membership service of the MAFTIA
architecture, which sends view updates for each membership changes. BRM is defined in
terms of two primitives: BR-multicast(M) and BR-deliver(M), where M is the message
multicasted by the sender. When a sender process BR-multicast(M) that means it used
the BRM protocol to multicast M, and when a recipient process BR-deliver(M) means that
it received a message M delivered by the BRM protocol. In a similar way, BAM is also
defined in terms of two primitives: BA-multicast(M) and BA-deliver(M), where M is the
message atomically multicasted by the sender.

The BAM protocol is described in Protocol 10. When a process p wishes to BA-
multicast a message M it executes BR-multicast(M) (Line 4). When a process BR-deliver
M, it adds M to the Message-Bufferp, which contains all messages locally delivered by
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process p according to BRM protocol. The variables of the protocol are given below:

• elistvn: is the current view sent by Byzantine Membership Service and vn is the view
number;

• M-header: is the header of a message M in the Message-Buffer. It contains the
eid of the sender, elist, timestamp, sn (sequence number for FIFO ordering) – these
parameters are obtained from BRM-deliver(M)) –, r (round number), and status
(either unstable, stable or pending):

M-header := (eid, elist, TTCB timestamp, sn, r, status);

• LVpr: is the local vector of the process p that contain all M-header with either
unstable or pending status in round r. The set of message M received and not
delivered until round r :

LVpr := {∀M-header : M ∈ (Message-Bufferp ∪ Pending-Bufferp)};

• LMpr: is the local matrix of the process p containing its own LMpr and the set of
LVqr’s received from each process q in the round r :

LMpr := {∀p,q : p,q ∈ elist, LVpr ∪ ∀LVqr};

In order to add a message M to Message-Bufferp, the header of M (M-header) is
built and added to the body of M, and its initial status is set to unstable. In order to
BA-deliver(M), the status of M must be stable. BA-deliver happens as follows: the set of
messages in Message-Bufferp is submitted to the Message Stability Detection (MSD) layer,
the heart of the BAM protocol, which detects the BA-deliverable (or stable) messages. The
BA-deliverable is the set of stable messages, stable means that all correct processes have
already BR-deliver them. Note that for any process p and q, in a round r, BA-deliverablep

must be equal to BA-deliverableq. Due to the asynchrony assumption of the payload system,
not always the set of messages in Message-Bufferp is the same in any correct process q, thus,
the remaining messages are put in Pending-Bufferp, or more precisely, Pending-Bufferp =
Messages-Bufferp - BA-deliverable. A message M’ in Pending-Bufferp (M’-header.status
= pending) could only be delivered when the outcome of one of the following rounds the
MSD indicates that M’ was finally BR-deliver by all correct processes.

The MSD of the BAM protocol is based on the virtual synchrony model [3]. The
views are ordered in an acyclic sequence. The MSD protocol is executed in each process,
in asynchronous rounds, and in a sequential manner – each round is used to detect a set
of stable messages (BA-deliverable = { ∀M: M-header.status = stable}). In the Figure 5.6
is presented the communication model of the BAM, the arrows of the upper part show
the messages exchanged by the applications, and the lower part represents the messages of
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Protocol 10 Byzantine Atomic Multicast (BAM)

1 Initialization:
2 r ← 0;

3 When a process p executes BA-multicast M
4 BR-multicast(M ) to elistvn;

5 When a process q BR-deliver M
6 build M-header ; set M-header.status to unstable;
7 M ← M-header + M ;
8 Message-Bufferp ← Message-Bufferp ∪ M ;

9 When a process p executes MSD in a round r
10 if TTCB getTimestamp() > to + r × T or Message-Bufferp > Buffer limit size then
11 r ← r + 1;
12 {Step 1: all process BR-multicast its LVpr to participants of elistvn}
13 LVpr ← ∀M-header : M ∈ (Message-Bufferp ∪ Pending-Bufferp);
14 BR-multicast(LVpr) to elistvn;
15 {Step 2: all process gather ∀LVqr: q ∈ elistvn, and BR-multicast LMpr}
16 wait until [∀q : delivered LVqr or q /∈ (elistvn ∪ ∀elistvn+k: k > 0)];
17 LMpr ← LVpr ∪ ∀delivered LVqr;
18 BR-multicast LMpr to elistvn;
19 {Step 3: all process gather ∀LMqr: q ∈ elistvn}
20 wait until [∀q : delivered LMqr or q /∈ (elistvn ∪ ∀elistvn+k: k > 0)];
21 BA-deliverablep ← ∀M : M-header ∈ (LMpr ∩ ∀delivered LMqr);
22 Pending-Bufferp ← (∀M : M-header ∈ LVpr) - BA-deliverablep;
23 Message-Bufferp ← Message-Bufferp - BA-deliverablep - Pending-Bufferp;

24 When a process p executes BA-deliver(BA-deliverablep)
25 order the BA-deliverablep messages according to timestamp (if FIFO so, uses sequence number too);
26 BA-deliver(BA-deliverablep);
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Figure 5.6: Example execution of the BAM protocol

the MSD protocol, which runs in background. The communications in both frames can be
executed concurrently.

In a round r, the MSD protocol is executed to detect which received messages and
not delivered from previous rounds could be delivered in present round. For a better
performance, the beginning of a round is defined in either a periodic manner or when the
Message-Buffer limit is reached (Line 10). By using this optimization we can reduce the
frequency of execution of the protocol when there is a small message traffic.

Each round is executed in three steps. On the first step, each process BR-multicast
its Local Vector (LV ), which contain the set of M-header of the batch of messages contained
within Message-Buffer and Pending-Buffer (all M-header with status either unstable or
pending). In the following step, each process waits for Local Vectors from each correct
process, indicated by the Membership Service. Since then, each process builds its own
Local Matrix (LM ) and BR-multicast it. Within a Local Matrix are contained all Local
Vectors of the group processes (correct or malicious). Finally, on the last step, each process
waits for Local Matrix from each process in elist, and, after that, it selects all of the stable
messages according to each LM received. The intersection of each LM will indicates the
stable messages, which already were BR-delivered by each process. Thus, that stable
messages can be BA-delivered. Messages not BA-delivered are put within Pending-Buffer
and their status set to pending. If a message M’ takes too long within Pending-Buffer
that could be indicative of something wrong with M’, and that could be a symptom of a
possible intrusion.
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5.3 Activity Services

This section describes the protocols that implement the MAFTIA transaction sup-
port activity service. Our approach is to implement standard atomic commitment and
abort protocols, and distributed locking protocols using service replication protocols that
transparently add intrusion-tolerance through replication and voting. This allows us to
tolerate the corruption of a certain proportion of replicas executing these protocols. We
also take advantage of the replication to implement distributed recovery protocols that de-
pend on the group’s continued functioning for recovery. We do not focus on the problems
of authorisation, or confidentiality of communications as these can be addressed through
the use of the MAFTIA authorisation service and standard IPSec.

In this section we introduce the following protocols:

• Service replication protocols

• Atomic commitment and abort protocols

• Distributed locking protocols

• Distributed recovery protocols

Our protocols depend upon the intrusion-tolerant group communication protocols
provided by the lower layers of the MAFTIA middleware.

5.3.1 Fault model

We replicate transaction managers and resource managers/resources. These form
server groups that are distributed across sites. Server groups are a set of n servers, of
which up to t may fail in completely arbitrary ways. Requests are handled by all members
of the service group and the majority result is returned to the user of the service. This
means that as long as no more than t servers fail, the overall service remains trustworthy.
To allow voting on results the servers are assumed to be deterministic. The value of t is
determined using the generalized adversary structures introduced in [11]. This approach
takes into account the diversity of the servers and attempts to find the minimum number
with a common failure mode. Our protocols can either be used with the time-free or
partially timed communication services. In particular we rely upon atomic broadcast, and
the intrusion-tolerant properties of the communication services. Note that, in order to
simplify our protocols we assume static groups of replicas.
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Interacting with the transaction managers and resource managers are an unknown
number of possibly faulty clients. Clients are outside our control and can be implemented
in any way. Therefore they can fail in arbitrary ways. Currently we do not make clients
intrusion-tolerant or the transaction service tolerant of misbehaving clients. For example,
clients may block the progress of transactions or access to resources managed by resource
managers. We have avoided using timeouts to resolve these problems as they introduce
a vulnerability that could be exploited by an attacker. Therefore, we propose that fu-
ture work could look at using the intrusion detection service to drive detection of client
misbehaviour.

5.3.2 Protocols

In this section we describe our protocols. Generally, our protocols map to Appia lay-
ers. Clients are implemented using the Multicast with Voting protocol layer. Transaction
managers are implemented using all the Service Replication protocol layers, Transaction-
Manager protocol layer and the RecoveryManager protocol layer. Resource managers are
implemented using the Service Replication protocol layers, ResourceManager protocol layer,
LockManager protocol layer and the RecoveryManager protocol layer.

5.3.3 Service Replication

The Service Replication protocols are designed to work together to provide simple
service replication. They are based upon the work in [8] which describes the protocols
for the implementation of dependable third-parties. The work described here can be seen
as another application of these ideas to the servers providing the transactional support
service. However, the protocols described in [8] assumed only a time-free model whereas
ours are intended to work with the partially-timed model as well. There are three protocols:
multicast with voting, opengroup, atomic broadcast and invocation.

Service replication is used to replicate transaction managers and resource managers.
The general approach is to replicate the managers using an active replication group man-
agement policy. In active replication, all the functioning members of the group perform
processing [63]. This requires that the replicas are deterministic and all client invocations
are processed in the same order. We make use of the atomic broadcast protocol to ensure
that client invocations are delivered in the same order to all honest replicas, and we make
use of voting to determine the majority decision of all replicas that return a result. Note
that when a request is send a sequential request id is encapsulated by the request, and
when the reply is returned it encapsulates the corresponding request id. This is to allow
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the client to order results and thereby achieve sequential consistency for the results of
requests.

5.3.3.1 Multicast with Voting

The Multicast with Voting protocol (Protocol 11) imposes a reply-request style of
communication between a client and a server group, and implements voting on the replies.
When the protocol is initialised a list of group members is passed to it. A client multicasts
to the group using the v-multicast-request message. When this is received the protocol
blocks, any further requests are queued until the current request has been satisfied. In the
protocol the message queue is represented by the set q, and we define the function append

for adding to the queue and first for removing the first member of the queue.

The multicast is implemented by sending the request to one member of the group
who has the responsibility of rebroadcasting it over an atomic broadcast channel to the
rest of the group. The advantage of this approach is that this ensures that each member
of the group has the message delivered in the same member as each other member. This is
required in order to implement state machine replication which requires that each replica
of the state machine processes each request in the same order as every other replica. When
sufficient (t+1) identical replies for a request have been received then the reply is returned
to the client, in the protocol we define a function countunique which counts the number
of identical members in a set. We can match replies to requests since a unique sequence
number is assigned to each request and is returned with each reply.

As the member of the group who initially receives the request may not be honest,
we use a local timeout. Unless the request has been successfully processed within a given
time then the request is repeated with the next member of the group. The open group and
invocation protocols filter requests, ensuring that identical requests (same message and
sequence number) are filtered out. For a complete discussion of this approach see Section
3.4, Deliverable D5 “Full Design of Dependable Third Party Services” [12].

5.3.3.2 Open Group Protocol

The OpenGroup protocol (Protocol 12) implements the rebroadcasting to the other
members of the group. It simply waits for a v-multicast message and rebroadcasts the
message using atomic broadcast to other members of the group. The message is only
rebroadcast if it does not exist in the history of delivered messages (history). The history
is maintained by the Invocation protocol and contains the sequence number of each message
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Protocol 11 Voting Multicast protocol (VMP).

1 Initialization:
2 group ←group members
3 t ←max failures
4 T ←required timeout
5 blocked ← false
6 q ← [] {message queue}
7 seq ← 0 {unique identifier for messages}

8 Upon receiving message (ID |j, in, v-multicast-request,m):
9 append(q,m)

10 Forever
11 if ¬blocked and q 6= {} then
12 blocked ← true
13 seq ← seq + 1
14 replies ← {}
15 curr dest ← 0
16 send (v-multicast,m|seq) to group[curr dest]
17 set timeout to T

18 Upon receiving message (ID |j, in, v-multicast-reply,m|reply seq):
19 if reply seq 6= seq then
20 {ignore, already received sufficient replies}
21 else
22 replies ← replies ∪m|reply seq)
23 if countunique(replies) = t + 1 then
24 reset timeout
25 output (ID |j, out, v-multicast-deliver,m)
26 blocked ← false

27 Upon timeout
28 curr dest ← curr dest + 1
29 if curr dest > length(q) then
30 halt and raise exception
31 else
32 replies ← {}
33 send (v-multicast,m|seq|j) to group[curr dest]
34 set timeout to T
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sent by a particular group. We define a function group() which calls the membership service
in order to determine which group a given party belongs to. We cannot simply rely upon
the sequence number to determine if a message has already been delivered as the sequence
number is serializable with respect to a particular group (or in the case of clients who may
form a group of one) or party.

Protocol 12 Open Group protocol (OGP).

1 Upon receiving message (ID |j, in, v-multicast,m|seq):
2 source ← j
3 membership ← group(j)
4 if ¬contains(history, membership|seq then
5 atomic broadcast (a-broadcast,m|seq|source) to membership

5.3.3.3 Invocation Protocol

The Invocation protocol (Protocol 13) allows the transactional protocols to be spec-
ified independently of the communication protocols. It acts a dispatcher and hides the
interface between the service replication protocols and the other functional protocols. The
invocation protocol maps multicast requests, multicast replies and atomic broadcast mes-
sages onto transactional messages. For example, a begin message received over the atomic
broadcast channel by a transaction manager is encapsulated within an atomic broadcast
a-deliver message. The transaction manager invocation protocol maps this to a local begin
message and appends the source of the message.

The protocol maintains a history of delivered messages in history, if a message from
a group has already been delivered then it is not subsequently delivered. This removes
duplicated messages that occur due to resends due to the multicast protocol.

5.3.4 Atomic Commitment and Abort Protocols

In this section we describe an intrusion tolerant two-phase atomic commitment
protocol [48] and an intrusion tolerant abort protocol that gain their intrusion-tolerance
from their reliance upon our service replication protocols. The service replication protocols
allow these protocols to treat resource manager groups, and the transaction manager group
as single entities. The atomic commitment protocol is blocking as a unanimous decision
to commit is required from all clients participating in the transaction before commitment
can take place. This is a consequence of avoiding the use of timeouts within the resource
managers or transaction managers. As a result we propose the use of some form of global
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Protocol 13 Invocation protocol (IP).

1 Upon receiving message (ID |j, in, a-deliver,m|seq|source):
2 membership ← group(source)
3 if ¬contains(history, membership|seq then
4 history ← history ∪membership|seq)
5 send m|seq|source to self

6 Upon receiving message (ID |j, in, v-multicast-deliver,m|seq|source)
7 send m|seq|source to self

8 Upon receiving message (tm-tid, m|seq|source):
9 send (v-multicast-reply, (tm-tid,m|seq)) to Psource

10 Upon receiving message (tm-join-reply, result|seq|source):
11 send (v-multicast-reply, (tm-join-reply, result|seq)) to Psource

12 Upon receiving message (tm-register-reply,m|seq|source):
13 send (v-multicast-reply, (tm-register-reply, result|seq)) to Psource

14 Upon receiving message (tm-commit-reply, result|seq|source):
15 send (v-multicast-reply, (tm-commit-reply, result|seq)) to Psource

16 Upon receiving message (tm-abort-reply, result|seq|source):
17 send (v-multicast-reply, (tm-abort-reply, result|seq)) to Psource

18 Upon receiving message (rm-prepare-reply, result|tid request|seq|source):
19 send (v-multicast-reply, (rm-prepare-reply, result|tid request|seq)) to Psource

20 Upon receiving message (rm-ack, seq|source):
21 send (v-multicast-reply, (rm-ack, seq)) to Psource

22 Upon receiving message (rm-prepare, resource id|dest):
23 send (v-multicast-reply, (rm-invoke-result, result|rtnV al|seq)) to group containing Psource

24 Upon receiving message (lock, resource id|tid request|source
25 send (v-multicast-request, (rm-prepare, resource id)) to group(Psource)
26 Upon receiving message (rm-abort, resource id|dest):
27 send (v-multicast-request, (rm-abort, resource id|tid request)) to group(Pdest)
28 Upon receiving message (rm-commit, resource id|tid request|dest):
29 send (v-multicast-request, (rm-commit, resource id|tid request)) to group(Pdest)
30 Upon receiving message (tm-register, resource id|tid request):
31 send (v-multicast-request, (tm-register, resource id|tid request)) to transaction mananger group
32 Upon receiving message (rm-invoke-result, result|rtnV al|seq|dest)):
33 send (v-multicast-request, (lock, resource id|tid request)) to group(Pdest)

34 Upon receiving message (unlock, resource id|tid request|dest)
35 send (v-multicast-request, (unlock, resource id|tid request)) to group(Pdest)
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deadlock detection system that interacts with the MAFTIA intrusion detection system to
solve this problem (for similar database approaches see [2].

There are two main protocols, the TransactionManager protocol (TMP) implemented
by the transaction manager and the ResourceManager protocol (RMP) implemented by the
resource manager. Each protocol is made up of several subprotocols. In this section we
provide each subprotocol and interleave them to reflect the progression of the two protocols
as the cooperate to realise intrusion-tolerant atomic commitment and abort.

5.3.4.1 Beginning a Transaction

Protocol 14 specifies how transactions are created. When a client requests the cre-
ation of a transaction then a new transaction identifier (tid) is generated and a transaction
record created. The transaction record is stored in a transaction log which is a hashtable
(trans log) that uses the tid as a key. We define put(table, key, entry) which stores entry

under the key value key in table table. Similarly, we define get(table, key, entry) which
retrieves the entry entry that is stored under the key value key. Each transaction record
(clients|resources|state) maintains the list of clients involved in the transaction, the re-
sources involved in the transaction and the current state of the transaction (for example,
begin or end).

Protocol 14 Transaction Manager protocol (TMP) – creating a transaction.

1 Upon receiving message (tm-begin,m|seq|source): {received from client}
2 tid ← tid + 1 {issue new transaction identifier}
3 clients ← {source} {add client who starts transaction}
4 resources ← {} {initially no resources}
5 state ← begin
6 put(trans log, tid, clients|resources|state) {store transaction record}
7 send (tm-tid, tid|seq|source) to self {return transaction id to the client}

5.3.4.2 Client Join

Protocol 15 specifies how clients may join a transaction. A client may only join
a transaction after it has been created. Any number of clients may be involved in a
transaction, they can only join if they know the tid. We assume that this is passed between
clients via channels external to the transactional support activity service. The protocol
receives the join request from the client who wishes to join, the request identifies the
transaction that the client wishes to join (tid request). The transaction log is checked to
see if the transaction does exist (we define the function contains(table, key) which returns
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true if the hashtable table contains an entry for key). If it does exist then the state of
the transaction is checked to ensure that it is active, in this case its state with be begin.
Otherwise the transaction is assumed to be either being committed, aborted or has already
ended. Finally, the result of the join request is returned to the requesting client.

Protocol 15 Transaction Manager protocol (TMP) – clients joining a transaction.

1 Initialization:

2 Upon receiving message (tm-join, tid request|seq|source):
3 if ¬contains(trans log, tid request) then
4 result ← false {transaction doesn’t exist}
5 else
6 get(trans log, tid, clients|resources|state)
7 if state 6= begin then
8 result ← false {transaction in progress or complete}
9 else

10 get(trans log, tid request, clients|resources|state) {get the existing client list}
11 clients ← clients ∪ source) {add the requesting client to the client list}
12 put(trans log, tid request, clients|resources|state) {update the transaction log}
13 result ← true
14 send (tm-join-reply, result|seq|source) to self {return result to client}

5.3.4.3 Resource Registration

Protocol 16 specifies how a resource manager that is asked to invoke a method
of a resource requests registration with the transaction (if it is not already a member),
protocol 17 specifies how transaction managers register resources.

In order to invoke a method on a resource that is managed by a resource manager,
the client sends a rm-invoke event to the appropriate resource manager group with the
object identifer of the resource that is the target of the invocation, the transactional context
for the invocation (tid request), and the details of the method invocation (method). For
brevity, we assume that method includes the name of the method and any arguments
supplied to the method.

Assuming that tid request is valid, then we check whether the resource has been
registered for the transaction. If it is not registered then we attempt to register it with
the transaction managers, assuming that this is successful then the state of the resource is
updated. Note that we assume there is a hashtable state that stores the transactional state
of each resource and uses the resource id as the key. If the resource was already registered
or it has now been successfully registered, then the method is invoked on the resource and
the result is returned to the client. Should tid request be invalid, or the resource cannot
be registered then the method is not invoked and the result notOk is returned to the client.
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Protocol 16 Resource Manager protocol (RMP) – invoking a resource manager, and
requesting the resource manager to commit.

1 Upon receiving message (rm-invoke, resource id|tid request|method|seq|source): {received from
client}

2 if tid request > 0 then
3 if contains(state, resource id) then
4 get(state, resource id, resource state) {find current state of resource}
5 else
6 resource state ← non-transactional {no current state for resource}
7 if resource state 6= transactional and resource state 6= prepare then
8 {resource not involved in a transaction, so register}
9 save state of resource id

10 send (tm-register, resource id|tid request) {send registration request to the transaction man-
ager group}

11 wait for tm-register-reply containing result of request
12 if result = ok then
13 {registration was ok, so update state table}
14 resource state ← transactional
15 put(state, resource id, transactional)
16 else
17 {unable to register resource, cannot make resource transactional}
18 put(state, resource id, non transactional)
19 if resource state = transactional then
20 {invoke method on resource}
21 rtnV al ← result of invoking method on resource id
22 result ← ok
23 else
24 {not transactional, cannot invoke method}
25 rtnV al ← null
26 result ← notOk
27 else
28 {invalid transaction id so cannot invoke method}
29 rtnV al ← null
30 result ← notOk
31 send (rm-invoke-result, result|rtnV al|seq|source {return result of invocation to client}
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The transaction manager receives the request from the resource manager group, as
long as the transaction exists then the list of resources that are members of the transaction
is updated.

Protocol 17 Transaction Manager protocol (TMP) – register a resource.

1 Upon receiving message (tm-register, tid request|seq|source): {received from resource asking to
be registered}

2 if ¬contains(trans log, tid request) then
3 {the transaction exists, retrieve the list of resources registered for the transaction}
4 result ← false {transaction doesn’t exist}
5 get(trans log, tid request, clients|resources|state)
6 if state 6= begin then
7 result ← false {transaction is being finalised or has ended}
8 else
9 {add the resource to the list of resources registered for the transaction}

10 resources ← resources ∪ source|resource id
11 put(trans log, tid, clients|resources|state))
12 result ← true
13 send (tm-register-reply, result|seq|source) to self {return the result to the requesting resource

group}

5.3.4.4 Commit

Protocol 18 shows how transaction managers start the two phase commit process
by asking all resource managers if they can commit their resources. All clients must agree
on commitment, if any client disagrees then resources are asked to abort.

Protocol 19 shows how the resource manager checks with the resource whether it is
prepared to commit and returns the result to the transaction manager.

5.3.4.5 Decide on Commit or Abort

Protocol 20 shows that transaction manager collect replies from resource managers
and decide on commit or abort. Once a decision has been made then the resource managers
are told to commit or abort, and clients are informed as to whether the transaction has
been committed or aborted. Note that when resource managers are asked to commit or
abort their resources then they are also asked to release any locks that they hold.

Protocol 21 specifies how a resource manager responds to a decision on commit
or abort by a transaction manager. Essentially it applies either commit or abort to the
resource being managed and updates its log that records each resource’s transaction status.

115



Protocol 18 Transaction Manager protocol (TMP) – beginning of two-phase commit.

1 Upon receiving message (tm-commit, tid request|seq|source): {received from client}
2 if contains(trans log, tid request) then
3 {transaction exists}
4 get(trans log, tid request, clients|resources|state)
5 if state = begin and contains(clients, source) then
6 transaction not finalising or ended, and the client requesting the commit is a member of the

transaction
7 put(trans log, tid request, voting) {record state as voting, prevents any other clients or resources

joining transaction}
8 register the client vote
9 if all clients agree on commit then

10 {ask all registered resources if they can commit}
11 dest = first(resources)
12 for all resources do
13 {ask all resource groups to prepare}
14 send (rm-prepare, resource id|dest) to self
15 dest = next(resources)
16 else if all clients voted but disagreement then
17 {tell all clients that commit failed}
18 result = notOk
19 dest = first(clients)
20 for all clients do
21 send (tm-commit-reply, result|seq|dest)
22 dest = next(clients)
23 {ask all registered resources to abort}
24 dest = first(resources)
25 for all resources do
26 send (rm-abort, resource id|tid request|dest) to self
27 dest = next(resources)
28 else
29 result = notOk
30 send (tm-commit-reply, result|seq|source) {inform client whether request is being acted upon or

not}

Protocol 19 Resource Manager protocol (RMP) – checking if resource is prepared to
commit.

1 Upon receiving message (ID |j, in, a-deliver,m|seq|source) where m is
(rm-prepare, tid request): {received from transaction manager}

2 put(state, resource id, prepare)
3 result ← result of invoking prepare on resource resource id
4 send (rm-prepare-reply, result|tid request|source|seq) to self {send vote to transaction manager}
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Protocol 20 Transaction Manager protocol (TMP) – decision phase of two-phase commit.

1 Upon receiving message (rm-prepare-reply, prepare result|tid request|seq|source): {receive
vote from resource manager}

2 if contains(trans log, tid request) then
3 get(trans log, tid request, clients|resources|state) {get current state}
4 if prepare result = ok then
5 {record vote as yes}
6 record resource vote as ok
7 else
8 {record vote as no}
9 record resource vote as notOk

10 if all resources have voted or any resource votes no then
11 {we can make a decision on transaction commit or abort}
12 if all resources vote to commit then
13 status ← commit
14 result = ok
15 dest = first(resources)
16 for all resources do
17 {tell all resources to commit changes and release locks}
18 send (rm-commit, resource id|tidrequest) to self
19 send unlock, resource id|tid request|dest to self
20 dest ← next(resources)
21 else
22 status ← abort
23 result = notOk
24 dest = first(resources)
25 for all resources do
26 {tell all resources to abort changes and release locks}
27 send (rm-abort, resource id|tid request) to self
28 send unlock, resource id|tid request|dest to self
29 dest ← next(resources)
30 {record state of transaction}
31 put(trans log, tid, clients|resources|state))
32 dest = first(clients)
33 for all clients do
34 {tell all clients result of attempted commit}
35 send (tm-commit-reply, result|seq|dest) to self
36 dest = next(clients)
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Protocol 21 Resource Manager protocol (RMP) – abort, and commit.

1 Upon receiving message (rm-abort, resource id|tid request|seq|source): {received from transac-
tion manager}

2 get(state, resource id, current state) {find out the transactional state of the resource}
3 if current state = prepare or current state = transactional then
4 {we can only abort if we are in a transaction}
5 invoke abort on resource resource id
6 put(state, resource id, non-transactional)
7 send (rm-ack, seq|source) to self {send acknowledgement to transaction manager}

8 Upon receiving message (rm-commit, resource id|tid request|seq|source): {received from transac-
tion manager}

9 get(state, resource id, current state) {find out the transactional state of the resource}
10 if current state = prepare then
11 {can only commit if already prepared}
12 invoke commit on resource
13 put(state, resource id, strnon− transactional)
14 send rm-ack, tid request|seq|source) to self {send acknowledgement to transaction manager}

5.3.4.6 Acknowledge Resource Manager Commit or Abort

Protocol 22 specifies how a transaction manager handles acknowledgement of re-
source manager commit or abort. When all acknowledgements have been received then it
marks the transaction as ended.

Protocol 22 Transaction Manager protocol (TMP) – handling acknowledgements of com-
mit or abort.

1 Upon receiving message (rm-ack-reply, tid request|seq|source):
2 if contains(trans log, tid request) then
3 get(trans log, tid request, clients|resources|state)
4 count the number of resources
5 if all received then
6 state ← end
7 put(trans log, tid request, clients|resources|state))

5.3.4.7 Abort

Protocol 23 specifies how a transaction manager implements abort when requested
to abort by a client. Essentially it contacts all resources and asks them to abort, it then
informs all clients of abort. Any client can force an abort of a transaction.
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Protocol 23 Transaction Manager protocol (TMP) – requesting an abort.

1 Upon receiving message (tm-abort, tid request|seq|source): {received from client}
2 result ← notOk
3 if contains(trans log, tid request) then
4 get(trans log, tid, clients|resources|state)
5 if state = begin and contains(clients, source) then
6 {valid abort request, transaction active and the client is a member of the transaction}
7 result ← ok
8 state ← abort
9 put(trans log, tid request, clients|resources|state))

10 {ask all resources to abort}
11 dest = first(resources)
12 for all resources do
13 send (rm-abort, resource id|tid request|dest) to self
14 dest ← next(resources)
15 if result = notOk then
16 {unable to abort, inform requesting client}
17 send (tm-abort-reply, request tid|result|seq|source) to self {sent to client}
18 else
19 {inform all clients of abort}
20 dest = first(clients)
21 for all clients do
22 {tell all clients result of attempted commit}
23 send (tm-commit-reply, result|seq|dest) to self
24 dest = next(clients)
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5.3.5 Distributed Locking Protocol

When locking resources the decision as to whether a resource manager will grant a
lock or not depends on whether the locks are compatible. We assume that clients within
the same transactional context take care of concurrency between them using an application
specific protocol.

The lock compatibility scheme implemented by the protocol is the commonly used
lock compatibility scheme of one writer and multiple readers. When an operation requests
a lock for a resource via a resource manager within the context of a transaction then one
of the following takes place (based on scheme in [28]):

• If the resource is not already locked, then the requested lock is granted.

• If the resource has a conflicting lock set by another transaction then the lock is not
granted, for example a write lock is considered to conflict with a read lock.

• If the resource has a non-conflicting lock set by another transaction then the lock is
granted.

• If the resource has already been locked in the same transaction then the lock is
promoted, for example a read lock can be promoted to a write lock.

The LockingManager protocol (Protocol 24) specifies the distributed locking proto-
col.

5.3.6 Distributed Recovery Protocol

We propose a simple recovery protocol (the RecoveryManager protocol 25) based
upon state transfer between replicas. This approach assumes that eventually a majority of
transaction managers will recover and accordingly resource managers will commit or abort.
We assume that no more that t replicas may fail and that some trusted process starts the
recovery process. This recovery process may require complete reinitialisation of the host
where the replica is executed as not only the state, but also the software, may have been
corrupted. While the system is recovering we assume that all other replicas queue requests
until recovery is over and the recovering replica is reintegrated into the group.
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Protocol 24 Locking Manager protocol (LMP).

1 Upon receiving message (ID |j, in, a-deliver,m|seq|source) where m is
(lock, lock request, resource id, tid request): {request from client}

2 get(lock log, resource id, lock|tids) {retrieve the current lock type and the transactions holding the
shared lock}

3 if lock = ∅ then
4 result ← ok; lock ← lock request; tid ← tid request
5 append(tids, tid request)
6 put(lock log, resource id, lock|tids)
7 else if lock request = read then
8 if lock = read then
9 result ← ok

10 else
11 {lock = write}
12 result ← notOk
13 else
14 {lockrequest = write}
15 if lock = read then
16 if length(tids) = 1 then
17 {only one transaction holds read lock, so promote}
18 result ← Ok
19 lock ← lock request
20 put(lock log, resource id, lock|tids)
21 else
22 result ← notOk
23 send (lock-result, result|seq|source to self {return result of request to client}

24 Upon receiving message (unlock, resource id|tid request|seq|source): {request from transaction
manager}

25 lock ← get(lock log, resource id)
26 if tid request = tid then
27 result ← ok; lock ← none; tid ← 0
28 put(lock log, resource id, lock)
29 else
30 result ← notOk
31 send (lock-result, result|seq|source to self {return result of request to transaction manager}
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Protocol 25 Recovery Manager protocol (RMP)

1 Initialization:
2 log ← initialise pointer to data structure representing the recovery log
3 {in the case of a transaction manager this is trans log,}
4 {in the case of a resource manager this is lock log and state}
5 Upon receiving message (recovery-getStatus, seq|source):
6 send (recovery-status-reply, trans log|seq) to Psource {return log to requesting replia}

7 Upon receiving message (ID |j, in, restart) from a trusted source
8 send (recovery-getStatus) to own group

9 Upon receiving message (recovery-status-reply, received log|source)
10 log ← received log {replaced current log with received log}

5.3.7 Related Approaches

The database community has explored the use of atomic broadcast protocols to
support transactions for replicated databases (for a good review of various approaches see
[73]). However, their focus has been on database replication for availability rather than
intrusion tolerance as they assume only crash failures are possible. Furthermore, their
models usually assume that transactions are executed locally on a member of a replica
group and the effect of the transaction is replicated.

It has been proposed by the group communications community that distributed
transactions are unnecessary [35, 62]. Their argument is based upon the argument that the
atomicity property is guaranteed when using atomic broadcast and therefore transactions
are not needed when dealing with updates to replica groups. However, it is not clear that
these approaches address isolation, subtransactions or recovery after failure. Also it is not
clear how serializability is maintained if transactions are allowed to interleave operations.

More recently it has been suggested to use group communications to implement
transactions. For example, [52] model have implemented a integrated model for transac-
tions and group communications where transactional replicas can be groups of processes.
In this model a single client interacts with transactional replicas. The replicas can be
aware of each other and communicate using multicast. The model also supports subtrans-
actions, multi-threaded transactions and considers failure atomicity. GroupTransactions is
implemented as a library TransLib for Ada [38]. However, it assumes a model structured
in terms of replicated databases rather than a CORBA style transaction architecture.

Our approach is to make use of standard group communication primitives, allow for
heterogeneous resources, apply error compensation techniques to improve intrusion toler-
ance, to allow for multi-party (and potentially) multi-threaded transactions and to consider
failure atomicity for a CORBA style transaction architecture. This differentiates our work

122



from approaches that make use of new or modified group communication primitives (for
example, optimistic broadcast) [35, 62, 73]. Also, unlike other approaches, our focus is not
on availability but on intrusion tolerance. This has resulted in us not being able to use
techniques such as passive replication that are widely used by the database community.
Passive replication is more efficient than active replication, and does not require determin-
istic replicas. However, the problem with adopting passive replication is its reliance on a
leader-follower model. The updates occur at the leader and the followers are informed of
the results. Whereas this adequate in a crash-fail fault model there are problems when the
leader can fail (be corrupted) yet keep on functioning and sending corrupted updates to
the leaders. By adopting an active replication approach we avoid this problem as there is
no single point of failure and more that t members of the group must be corrupted before
the group as a whole is compromised.

Our system could be used to implement error confinement at the application level.
An example of this approach in the database world is [43] where transactions are used to
allow rollback or compensatory action after an intrusion has been detected.

5.4 Membership

This section describes the dynamic membership service. This service provides basi-
cally three operations: the addition of sites to a group, the removal of sites from the group
due to a request from a member, and the removal of a site due to its failure.

5.4.1 Membership in the Asynchronous Model

Dynamic groups are supported by the group membership modules mentioned above.
The protocols are parameterized by an instance of a View, which contains all relevant
parameters (such as the number and the identities of all members).

We need three basic protocols to maintain the secret keys within a dynamic group:
Add, Remove, and Reshare. Since this work is currently being developed, we only give a
brief overview of these here; more details can be found in [68].

Protocol Add adds a new member to the group as a consequence of the joinGroup

operation, and supplies the necessary secret keys. For the commonly used linear secret
sharing schemes, this can be achieved by means of a distributed secure computation from
which the new member learns its secret key.

Protocol Remove eliminates a member from the group as a consequence of the

123



leaveGroup or excludeGroup operation. No communication between the members is
needed to achieve this, but one must assume that all cryptographic keys are removed
from the memory of the removed party.

Protocol Reshare basically involves replacing the degree-t sharing polynomial with
a randomly chosen degree-t′ polynomial that shares the same secret. This is a well-known
primitive in synchronous threshold cryptography, but new protocols had to be developed
for the asynchronous case [68].

5.4.2 Membership with Support from the TTCB

This section is concerned with site level membership, i.e., with groups of hosts. The
membership service handles basically three operations: the addition of sites to a group,
and the removal of sites from the group either due to a failure or to a specific request from
that site.

The membership service relies on a safety invariant that at most f out of n =
3f +1 sites are failed in each group. Some membership services for fail-silent systems that
have been proposed in the literature handle not only these operations but also network
partitions. In our case, with an arbitrary failure model, given the invariant above, it is not
possible to handle partitions, since no partition would guarantee the invariant and be able
to make progress or merge back the main partition 1. In fact, handling partitions seams
to be incompatible with an arbitrary failure model, unless we assume than no more than
a fraction out of f = n−1

3
members can fail.

The membership service generates views, i.e., numbered events containing the group
members. A view is generated by the service whenever the membership is changed due to
a member join, leave or failure. We consider that a view is defined at a site if the site is
in that view. A group of sites is created when the first member joins and installs the first
view.

We present the membership service as if a site could be in a single group. We do
this without loss of generality, to avoid constant references to the group identification.

The view a site Si is an array V n
i kept at that site with current members of the

group. The index n reflects the nth view of the group. The protocol guarantees that every
correct site has the same view at every instant of logical time, i.e., after the delivery of the
same (totally ordered) view in every site.

1We could assume that the invariant holds for any partition. However, this would imply, for instance,
that if a single site became partitioned from the group then it would be necessarily correct!
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The membership protocol is defined formally in terms of the following properties
(inspired in [59]):

• Uniqueness. If views V n
i and V n

j are defined, and sites Si and Sj are correct, then
V n

i = V n
j .

• Validity. If site Si is correct and view V n
i is defined, then Si ∈ V n

i and, for all correct
sites Sj ∈ V n

i , V n
j is eventually defined.

• Integrity. If site Si ∈ V n
i and V n+1

i is not defined then at least one correct site
detected that Si failed or Si requested to leave. If site Si ∈ V n+1

i and V n
i was not

defined then at least one correct site authorized Si to join.

• Liveness. If 2
3
|V n|+ 1 correct sites detect that Si failed or receive a request to join,

or one correct site requests to leave, then eventually V n+1 is installed, or the join is
rejected.

Uniqueness guarantees that all correct sites in a group see the same membership.
Validity guarantees that if a view is defined at a site then the site is in the view (often
called Self-Inclusion property). Validity guarantees also that every correct site in a view
will eventually install the view. Integrity prevents isolated malicious sites from removing
or adding sites to the group. Liveness guarantees that the view changes when a number
of correct sites detectes a failure, or a correct site wants to join or leave (or the join is
rejected).

The Byzantine Group Membership Protocol (BGM) evolves at each site in three
states: Normal, Agreement and Stabilize. BGM works roughly the following way. When a
site joins a group it enters the Normal state. When another site wants to join or leave, or
when a site is detected to be failed, certain events are generated and the protocol changes
to the Agreement state. In this state, the sites of the current view try to agree on the next
view, running the View Change Agreement protocol (VCA or agreement protocol, not to
be confused with the TTCB Agreement Service). Each site proposes the view changes it
thinks that should be performed. When an agreement between at least (n − f) of those
sites is reached, the protocol changes to the Stabilize state. That state stabilizes the
communication according to the group semantics. When the communication is stabilized,
the new view is installed.

BGM verifies the four properties above. An extra economy principle for BGM is that
no useless executions of VCA should be performed. The reasons for this are (1) VCA uses
communication and TTCB resources, and (2) during VCA group communication probably
has to stop (depends on the group semantics). Therefore, the protocol enforces:
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• Correct sites do not try to start an agreement without a reasonable expectation that
a new view will be installed or a site join rejected.

• Malicious sites are prevented from starting a VCA, even if the maximum number of
f failed sites are malicious and collude in trying to do so.

Let us illustrate the first objective looking at failure detection. Imagine that a
site detected a failure. Even if all correct sites detect the failure, the detection is not
simultaneous. Therefore, if one site detects a failure ahead and tries immediately to change
the view proposing the removal of the failed site, probably the other sites will reject the
change. This VCA execution would be useless. The second objective is clear.

The following section presents the site failure model. Section 5.4.2.2 gives two basic
multicast protocols used by BGM. Then, three sections describe what happens when a
site is detected to be failed, or a site wants to join or leave (Sections 5.4.2.3 – 5.4.2.5).
These sections describe how the events that feed the BGM protocol are generated. BGM
is presented in Section 5.4.2.6.

5.4.2.1 Site Failure Model

We denote by site the software entity that executes the protocols in a host. There-
fore, we are interested here in the failure model of sites. We say generically that a site
is correct if it follows the protocol. There are several circumstances, however, that may
lead to the site failure. For instance, a site can crash (e.g., due to a host crash) or can be
corrupted by a hacker. In an arbitrary failure model, which is what is being considered
in this document, sites can fail arbitrarily. Therefore, a site can simply stop working, can
send messages disregarding the protocol, can delay messages, and even collude with other
malicious sites trying to break the protocol.

A site uses a number of secrets for authentication and to protect its communication:
the pair (eid, secret) used to communicate with the TTCB and a set of symmetric keys to
communicate with other sites. If an attacker manages to discover these secrets, we consider
that the site is failed, since it can be impersonated.

An attacker with access to the network (or even to the host) may be able to disrupt
the communication of one or more sites. In that case we also consider those sites to be
failed. In channels with only accidental faults it usually considered that no more than Od

messages are corrupted/lost in a reference interval of time. Od is the omission degree and
tests can be made in concrete networks to determine Od with the desired probability [72].
Given this parameter, some protocols will retransmit message Od+1 times; if the message
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is not received then the communication is being disrupted by an attacker and the site is
considered to be failed. If the communication is very delayed then we also consider it failed.

5.4.2.2 Basic Multicast Protocols

This section presents two multicast protocols that guarantee the following proper-
ties:

• Validity: If a correct process multicasts a message M, then some correct process in
group(M) eventually delivers M.

• Integrity: For any message M, every correct process p delivers M at most once and
only if p is in group(M), and if sender(M) is correct then M was previously multicast
by sender(M).

The predicate sender(M) gives the message field with the sender, and group(M)
gives the “group” of processes involved, i.e., the sender and the recipients (note that we
consider that the sender also delivers). Here, process should be read site. The site model
can be found in Section 5.4.2.1.

These two properties are common to reliable multicast protocols but the two proto-
cols do not guarantee the Agreement property, i.e., that either all correct processes deliver
the message or none [36]. The two protocols are very simplified versions of the BRM
protocol.

We provide two similar protocols to be used in different cases. McastMAC does
not use the TTCB but requires the sites to share symmetric keys (Protocol 26). Since
these keys are not always available, McastTTCB uses the TTCB to avoid this requirement
(Protocol 27).

McastMAC uses message authentication codes (MAC) to guarantee the integrity and
authenticity of messages [44]. This type of signature is based on symmetric cryptography,
that requires a different secret key to be shared between every pair of sites. Since messages
are multicast to a set of processes, a message does not take a single MAC but a vector with
one MAC per recipient [21]. McastMAC multicasts M (Od + 1) times to tolerate accidental
faults in the network. If an attacker disrupts the communication, malicious faults, one of
the sites is considered to be malicious (Section 5.4.2.1).

McastTTCB uses the TTCB Agreement service to guarantee the integrity and au-
thenticity of messages. The sender uses the service to send the recipient a reliable hash of
the message. Given the properties of hash functions, the recipient can verify if the message
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Protocol 26 McastMAC protocol.

1 M ←(my-eid, elist, data); {Sender}
2 mac-vector ←calculate macs of M;
3 M ←M ∪ mac-vector;
4 repeat
5 multicast M to elist except sender;
6 until done Od + 1 times
7 deliver(M);

8 When (message M received) and (M not delivered) {Recipient}
9 if M.mac-vector[my-eid] is ok then

10 deliver(M);

Protocol 27 McastTTCB protocol.

1 M ←(my-eid, elist, TTCB getTimestamp() + T1, data); {Sender}
2 repeat
3 multicast M to elist except sender;
4 until done Od + 1 times
5 propose ←TTCB propose(M.elist, M.tstart, TTCB TBA RMULTICAST, H(M));
6 deliver(M);

7 read(M); {Recipient}
8 propose ←TTCB propose(M.elist, M.tstart, TTCB TBA RMULTICAST, H(M));
9 if propose.error = OK then

10 repeat
11 decide ←TTCB decide(propose.tag);
12 until (decide.error = TTCB TBA ENDED);
13 while H(M) 6= decide.value do
14 read(M);
15 deliver(M);
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it received is correct [44]. McastTTCB also multicasts the messages (Od + 1) times for the
same reason as McastMAC . These protocols are used to transmit short control messages,
so to multicast (Od + 1) copies is not a high overload.

5.4.2.3 Removing Failed Sites

Each site has a Site Failure Detector module (SF, Figure 1.1). SF gives failure detec-
tion events about sites (EFD(site)) to the Site Membership module (SM). The membership
protocol, BGM, does not use the failure detector to guarantee the safety or liveness of the
agreement protocol, VCA, but only to remove failed sites from the membership. Chandra
and Toueg classified crash failure detectors in terms of two properties: Accuracy (ability
to avoid false detections) and Completeness (ability to detect actual failures) [24]. BGM
assumes that the failure detector has Strong Accuracy: no site is detected failed before it
fails. The reason for this is that the membership protocol uses these detections to remove
sites and only failed sites can be really removed. BGM does not require a specific type of
Completeness. A site is removed when enough sites detect its failure.

BGM is independent of the types of failures detected. It can work with failure
detectors that detect from crash to Byzantine failures. We present one possible failure de-
tector that detects Byzantine failures in Section 5.4.2.8. We do not consider site recoveries
since we assume a failure detector with Strong Accuracy. However, a removed site can try
to rejoin the group executing the join protocol.

Taking in account the economy principle given previously, when a site detects a
failure, event EFD(site), it multicasts that event using McastMAC (see Protocol 31). The
delivery of the multicast at a site is an event EdlvFD(sender,object) (sender is the site that
generated the detection; object is the site whose failure was detected). When a site delivers
the (2f + 1)th event of the kind, about the same site but incoming from different sites, it
starts VCA. Waiting for (2f +1) events guarantees that the view change will be performed
(economy principle).

5.4.2.4 Site Join

In the crash model, when a site wants to join a group it has to find out a non-
crashed contact site. In the arbitrary failure model, joining a group is more complex since
(1) ex-members may be malicious and provide false information about membership; (2)
finding out actual members is not enough since some members may also be malicious. The
solution is to contact a number of sites from which a majority is correct. Since we do not
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make assumptions on the number of failed sites in the universe of possible sites, these sites
have to be members of the group. However, when the site wants to join it does not know
the membership of the group, so how can it contact the members?

A solution for this problem is to have a trusted third party in charge of providing
membership information. This membership server (MServer) has to be secure and to have
high availability. We assume the existence of MServer.

We assume that sites can get a reliable copy of the MServer’s address and public
key Ku. This key corresponds to a private key Kr known only by the server and is used for
every site to establish a shared symmetric key K〈MS,Si〉. This key can be used to simulate a
secure channel between the site and MServer, in a similar way to the entity-TTCB secure
channel [26].

MServer is a “database” that contains pairs (siteGroupId, view). The database is
used in the following way:

1. When a group is created, the initial member, S1 establishes a secure channel with
MServer (in case it does not have one yet) and gives MServer the group identification
and the initial view, that contains only S1 itself.

2. When a new view V n+1 is installed, each correct member site Si ∈ V n sends MServer
a pair (siteGroupId, V n+1). The group view in MServer is changed when it receives
|V n|−1

3
+ 1 = (f + 1) identical pairs. The information in MServer is reliable due to

the assumption that no more than f sites in a view fail. Therefore, receiving (f + 1)
copies guarantees that this information is correct.

When a site Si wants to join a group the following happens (Protocol 28):

1. Si contacts MServer and establishes a secure channel with it.

2. Si makes a request to MServer and gets a view V n of the group it wants to join.

3. Si sends a request to join to the members in V n using McastTTCB
2; the request can

contain additional information used for the sites to grant or deny authorization to
join; several authorization schemes can be used so we do not give details about it.

4. Each site that gets the request (event EdlvReqJoin(sender,credential) in Protocol 31,
where sender is the joining site and credential is information used for authorization)
does McastMAC of the request to all group members. The delivery of this message is

2It uses McastTTCB instead of McastMAC because it does not have shared keys with the other sites
yet.
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the event EdlvMcastJnRq(sender,object) (sender is the site that sent the McastTTCB;
object is the site that wants to join).

5. When a site receives (2f + 1) events for the same site, it changes to the Agreement
state. Waiting for (2f +1) events guarantees that the join will be explicitly accepted
or rejected by the group (economy principle).

6. When the agreement (VCA) terminates the group sites inform Si if it can join or not.

Protocol 28 Joining site protocol.

1 When site Si calls joinSiteGroup(siteGroupId, credential)
2 establishKeyMServer(); {if not established yet}
3 V n ←MserverGetView(siteGroupId);
4 McastTTCB(V n, RequestToJoin);

5 When (f + 1) replies with same answer delivered
6 if Accepted then
7 establishKeys(V n);
8 start BGM;

9 When establishKeys(L) is called {L is a list of sites}
10 for all sites Si ∈ L that not me do
11 if my-eid < eid(Si) then
12 elist = (my-eid,eid(Si));
13 else
14 elist = (eid(Si),my-eid);
15 propose ←TTCB propose(elist, tstartke, TTCB TBA KEY, 0);
16 repeat
17 decide ←TTCB decide(propose.tag);
18 until (decide.error = TTCB TBA ENDED);
19 KSi = decide.value;

Sites that join a group need to receive the new view information (since they did not
participate in the VCA) and to establish shared keys with all the other group members.
This section details how this is done.

When the BGM protocol state changes from Agreement to Stabilize and there are
new sites, the (correct) sites that transited from the previous view do a McastTTCB to the
new sites. This multicast contains two pieces of information: the new view V n+1 and an
instant tstartke. When the joining site gets (f + 1) identical copies of that information it
installs the view and goes to the Normal state.

The instant tstartke has to be defined deterministically so that all correct sites send
the same value. It is given by tstartke = tstartf + Tke, where tstartf is the tstart value
used in the last TTCB Agreement of the VCA protocol that decided the new view and Tke

is a constant.

131



tstartke is used to establish the shared keys. This operation is based on the TTCB
Agreement service and a decision function decision = TTCB TBA KEY that establishes
a shared key. A non-optimized version of the key establishment algorithm is shown in
Protocol 28 3. Sites that transited from the previous view execute the same protocol but
establishing keys only with the sites that joined.

5.4.2.5 Site Leave

When a site decides to leave a group, it calls leaveSiteGroup(siteGroupId). This
call generates an internal Eleave event. The site does an McastMAC with the event and starts
a VCA to change the view. VCA and McastMAC authenticate the sites, therefore correct
sites know if it is the site that is trying to leave or if it is a malicious site trying to remove
it. If a site delivered an McastMAC with a EdlvLeave(site) event, when it proposes the view
change it requests that leave. Requests to leave are always accepted by all correct sites.

5.4.2.6 BGM Core Protocol

The Byzantine Group Membership protocol (BGM) (Protocol 31) has the three
states mentioned above: Normal, Agreement, Stabilize. BGM handles a set of events
that we resume here:

• EFD(object): local failure detector detected the failure of site object

• EdlvFD(sender,object): delivered an McastMAC with an indication that site sender
detected the failure of site object

• EdlvReqJoin(sender,credential): delivered an McastTTCB with a join request from site
sender (credential is information used for authorization)

• EdlvMcastJnRq(sender,object): delivered an McastMAC from site sender with a request
to join for site object

• Eleave: local site wants to leave group

• EdlvLeave(sender): delivered an McastMAC with a request to leave from site sender

• EdlvGMcast(sender, view number, Bvc): delivered a GMcast message from site sender
for viewnumber ; Bvc is a bag with view change proposals

3This version is more readable than the optimized version. The latter executes the TTCB agreements
in parallel.
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The Normal state corresponds to a stable membership and normal communication.
When certain combinations of the events above happen in a site, that site engages in
the View Change Agreement protocol (VCA or agreement protocol) (Protocol 30) and the
state changes to Agreement. This engagement consists in proposing a set of view changes
using the Group Membership Multicast protocol (GMcast) (Protocol 29). There is a set of
GMcast tasks per VCA: one used by the process to propose (send) view changes; one per
each other site in the current view that proposes a view change (at most f failed sites may
not propose).

The combinations of events that cause a site do GMcast are (Protocol 31):

• the delivery of (2f +1) EdlvMcastJnRq(sender,object) events from different sites, about
the site object

• the delivery of (2f + 1) EdlvFD(sender,object) events from different sites, about the
site object

• the event Eleave

• the delivery of a GMcast with a request to leave from the sender of the GMcast

• the delivery of (f + 1) GMcasts

The fact that the protocol handles these combinations of events instead of the events
themselves, e.g., the delivery of (f + 1) GMcasts instead of the delivery of a single one, is
a consequence of the economy principle.

The GMcast protocol is used to propose view changes. These view changes are:

• V CJoin(site,accept): site wants to join; accept indicates if the site is authorized to
join or not

• V CRmvFailed(site): proposes the removal of site since it is failed

• V CLeave(site): remove site from the group

View Change Agreement

VCA reaches agreement in a distributed way, i.e., the decision of a result is taken
locally by each site. At each site, VCA selects a set of at least (n−f) = (2f +1) GMcasts,
out of n = |V n| GMcasts that should be sent (see Protocol 30). The function vote chooses
from these GMcasts which view changes are performed:
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• a site Si with at least (f + 1) V CRmvFailed(Si) proposals is removed

• a site Si with at least (f + 1) V CJoin(Si,accept) proposals accepting/rejecting it is
allowed/rejected to join

• a site Si with (1) a V CLeave(Si) sent by Si or (2) at least (f + 1) V CLeave(Si) is
removed

GMcast is basically a reliable multicast protocol with some similarities to BRM [25]
(Protocol 29). Sites use GMcast to propose view changes. Since GMcast is a reliable
multicast: (1) all correct sites deliver the same view change proposals; (2) if a correct
sender transmits a view change proposal, then all correct sites deliver that message [25].
Additionally to being a reliable multicast, each GMcast task periodically (every Tagr)
makes a TTCB propose for a TTCB agreement with the hash of the message it sent
or received. When GMcast gets the result of one of these TTCB agreements (call to
TTCB decide), it blocks calling the function block. When all GMcast tasks corresponding
to a VCA block, VCA processes the result of these TTCB agreements and unblocks them.
These TTCB agreements are used by VCA to choose the above mentioned (n−f) messages
which are used to select view changes (see Protocol 30).

The comparison of the TTCB agreements puts some difficulties, addressed in Pro-
tocols 29 and 30. The first is that a malicious process can try to send a GMcast message
with a tstart far in the future. This would make all GMcast tasks block waiting for the
result of that TTCB agreement. To avoid this, if tstart is after t + Tagr, where t is the
present instant, it is normalized (line 8 in Protocol GMcast). To be normalized means to
be put in the interval [t, t+Tagr]. If tstart is “too much” in the past, it is also normalized
(for instance, if it is older than the previous view change). The second difficulty is that
GMcast message may be received in a site after its TTCB agreement terminates, i.e., after
the other GMcast tasks for the same VCA to unblock. When the other tasks block again,
they will be blocked in TTCB agreement with different tstart’s. The solution for this is to
unblock only the late task while keeping those ahead blocked (lines 16–18 in VCA). The
late one will block right away and it will be possible to compare the results of corresponding
TTCB agreements.

5.4.2.7 Membership Protocol and FLP

Fischer, Lynch and Paterson proved that no deterministic protocol can solve the
agreement problem in asynchronous systems if even a single process is allowed to crash [34].
In practical systems this FLP impossibility result has to be circumvented, for instance
using randomization [57], partial-synchrony [32] or unreliable failure detectors [22]. The
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Protocol 29 Group Membership multicast protocol (GMcast).
1 When GMcast(V, nview + 1, Bvc) called {task Si = self}
2 tstart0 ←TTCB getTimestamp() + T1;
3 M ←(DAT, my-eid, elist(Si, V n), tstart0, (nview + 1,Bvc));
4 multicast M to V n\Si; n-sends ←1;
5 goto Common-code;

6 When M for a new GMcast received {task Si = sender(M)}
7 read blocking(M); n-sends ←0;
8 tstart0 ←normalize(M.tstart); {only if out of bounds}
9 {Common-code}

10 propose ←TTCB propose(M.elist, tstart0, TTCB TBA RMULTICAST, H(M));
11 repeat
12 decide ←TTCB decide(propose.tag);
13 until (decide.error = TTCB TBA ENDED);
14 if (decide.proposed-ok contains all recipients) then
15 GMcast-deliver M;
16 ret ←block(tstart0, decide.proposed-ok);
17 if ret 6= END then
18 tstart0 ←tstart0 + Tagr;
19 propose ←TTCB propose(M.elist, tstart0, TTCB TBA RMULTICAST, H(M));
20 M-deliver ←⊥; hash ←decide.value;
21 mac-vector ←calculate macs of (ACK, my-eid, M.elist, M.tstart, decide.value);
22 M-ack ←(ACK, my-eid, M.elist, M.tstart, mac-vector);
23 n-acks ←0; ack-set ←eids in decide.proposed-ok;
24 t-resend ←TTCB getTimestamp();
25 repeat
26 if (M.type = DAT) and (H(M) = hash) then
27 if M not delivered then
28 GMcast-deliver(M);
29 M-deliver ←M; ack-set ←ack-set ∪ {my-eid};
30 if (my-eid /∈ decide.proposed-ok) and (n-acks < Od+1) then
31 multicast M-ack to V n\Si; n-acks ←n-acks + 1;
32 else if (M.type = ACK) and (M.mac-vector[my-eid] is ok) then
33 ack-set ←ack-set ∪ {M.sender};
34 if (M-deliver 6= ⊥) and (TTCB getTimestamp() ≥ t-resend) then
35 multicast M-deliver to V n\{{Si}∪ack-set}
36 t-resend ←t-resend + Tresend; n-sends ←n-sends + 1;
37 if ret 6= END then
38 decide ←TTCB decide(propose.tag);
39 if decide.error = TTCB TBA ENDED then
40 ret ←block(tstart0, decide.proposed-ok);
41 if ret 6= END then
42 tstart0 ←tstart0 + Tagr;
43 propose ←TTCB propose(M.elist, tstart0, TTCB TBA RMULTICAST, H(M));
44 read non blocking(M); {sets M = ⊥ if there are no messages to be read}
45 until ((ack-set contains all recipients) or (n-sends ≥ Od+1)) and (ret = END);
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Protocol 30 View Change Agreement protocol (VCA).
1 When all GMcast(Si) corresponding to a VCA called block(tstarti, proposed-oki)
2 if ∀Si,Sj∈V n : tstarti = tstartj = tstart then
3 Bts ←Bts ∪ {tstart};
4 for all Si ∈ V n do
5 if ∃ task GMcast(Si) then
6 A[i] ←proposed-oki; {A[]: array to save results of agreements}
7 else
8 propose ←TTCB propose(elist(Si, V n), tstart, TTCB TBA RMULTICAST, 0);
9 repeat

10 decide ←TTCB decide(propose.tag);
11 until (decide.error = TTCB TBA ENDED);
12 A[i] ←decide.proposed-ok; {⊥ if error}
13 else {handle tasks still in earlier TTCB agreements}
14 tstartmin ←tstarti : ∀Si,Sj∈V n tstarti ≤ tstartj ;
15 if tstartmin ∈ Bts then {that TTCB agreement was already handled}
16 for all Si : tstarti = tstartmin do
17 wake up task GMcast(Si) returning CONTINUE;
18 return;
19 else {that TTCB agreement was not handled yet}
20 for all Si ∈ V n do
21 if tstarti = tstartmin then
22 A[i] ←proposed-oki;
23 else
24 propose ←TTCB propose(elist(Si, V n), tstartmin, TTCB TBA RMULTICAST, 0);
25 repeat
26 decide ←TTCB decide(propose.tag);
27 until (decide.error = TTCB TBA ENDED);
28 A[i] ←decide.proposed-ok;
29 Bmsg ←⊥;
30 for all Si ∈ V n do
31 if #{sites that proposed-ok for GMcast(Si)} ≥ f+1 then
32 Bmsg ←Bmsg ∪ {Si}; {Bmsg saves senders of messages chosen}
33 if #Bmsg ≥2f+1 then
34 wake up tasks returning END;
35 else
36 wake up tasks returning CONTINUE; {wait for next set of TTCB agreements}

37 When (#Bmsg ≥ 2f + 1) and (GMcast delivered all messages in Bmsg)
38 VCA-deliver vote(Bmsg); {VCA protocol ends}
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Protocol 31 Byzantine Group Membership protocol (BGM).
1 Initialization:
2 nview ←1; {view number} V 1 ←S1; {view} Bvc ←⊥; Bfd ←⊥; Bjn ←⊥;

3 When EFD(object)
4 Bvc ←Bvc ∪ {V CRmvFailed(object)}; {Bvc: bag with view changes the site wants to do}
5 McastMAC(V n, FD(object));

6 When EdlvFD(sender, object) and (FD(sender, object) /∈ Bfd)
7 Bfd ←Bfd ∪ {V CRmvFailed(sender,object)}; {Bfd: bag with incoming failure detections}
8 if (state = NORMAL) and (#{V CRmvFailed(s,o) ∈ Bfd : o = object} ≥ 2f+1) then
9 GMcast(V n, nview+1, Bvc); state ←AGREEMENT;

10 When EdlvReqJoin(sender, credential)
11 Bvc ←Bvc ∪ {V CJoin(sender,accept(sender))}; {accept(sender) indicates if the site authorizes the

join}
12 McastMAC(V n, Join(sender));

13 When EdlvMcastJnRq(sender, object)
14 Bjn ←Bjn ∪ {EdlvMcastJnRq(sender,object)}; {Bjn: bag with incoming requests to join}
15 if (state = NORMAL) and (#{EdlvMcastJnRq(s,o) ∈ Bfd : o = object} ≥ 2f+1) then
16 GMcast(V n, nview+1, Bvc); state ←AGREEMENT;

17 When Eleave

18 Bvc ←Bvc ∪ {V CLeave(self)}; McastMAC(V n, Leave(self));
19 if state = NORMAL then
20 GMcast(V n, nview+1, Bvc); state ←AGREEMENT;

21 When EdlvLeave(sender)
22 Bvc ←Bvc ∪ {V CLeave(sender)};

23 When (state = NORMAL) and ((EdlvGMcast(sender, nview +1, Bvc′′) and V CLeave(sender)) or
((f + 1)th EdlvGMcast(−, nview + 1, Bvc′′)))

24 GMcast(V n, nview+1, Bvc); state ←AGREEMENT;

25 When (state = AGREEMENT) and (VCA delivers Bvc’)
26 Bvc ←Bvc \ Bvc’; Bfd ←Bfd \ {V CRmvFailed(s,o) ∈ Bfd : ∃V CRmvF ailed(o′)∈Bvc′ , o = o’};
27 Bjn ←Bjn \ {EdlvMcastJnRq(s,o) ∈ Bjn : ∃V CJoin(o′,−)∈Bvc′ , o = o’};
28 if ∃V CJoin(s,a)∈Bvc′ : a = Accepted then
29 L ←{s: V CJoin(s, a) ∈ Bvc′ and a = Accepted}; McastTTCB(L, view info); establishKeys(L);
30 if ∃V CJoin(s,a)∈Bvc′ : a = Rejected then
31 L ←{s: V CJoin(s, a) ∈ Bvc′ and a = Rejected}; McastTTCB(L, Rejected); establishKeys(L);
32 if Bvc’ contains only rejected joins then
33 state ←NORMAL; {stay in the same view}
34 else
35 state ←STABILIZE; {stabilize to install new view}

36 When (state = STABILIZE) and (finished stabilizing)
37 nview ←nview+1;
38 if (∀Si∈V n , #{V CRmvFailed(s,Si) ∈ Bfd} < 2f+1) and (∀Si , #{EdlvMcastJnRq(s,Si) ∈ Bjn} < 2f+1)

and (Eleave /∈ Bvc) then
39 state ←NORMAL;
40 else
41 GMcast(V n, nview+1, Bvc); state ←AGREEMENT;137



membership problem was proved to be equivalent to agreement so it is also bound by
FLP [23]. Therefore, how does VCA circumvent the FLP impossibility result?

The first thing to be noted is that the system model considered is not purely asyn-
chronous (see MAFTIA deliverables D1 and D23). The payload system has unreliable
timeliness, so it is asynchronous, but the TTCB is a synchronous, timely subsystem, that
provides synchronized clocks and a set of timely services (timely at the TTCB interface).

We want to show how VCA circumvents FLP. Recall how VCA works (Protocol 30).
VCA does not try to get contributions from all group sites but only from (n − f). Each
correct site makes a view change proposal using GMcast. Periodically every correct site
tries to TTCB propose a hash of the GMcast it sent and the others it received. Therefore,
periodically a set of TTCB agreements give every correct site a consistent snapshot of
which sites delivered which GMcasts messages.

Since every correct site gets the same snapshot, they can reach agreement applying
a deterministic stop (and decision) criterium. This set of TTCB agreements work as a
sort of Unreliable Failure Detector, with weak accuracy but that gives precisely the same
suspicions at every site. With the passage of time, the probability that all correct sites
deliver all GMcasts tends to 1. The stop criterium is: stop when (f +1) sites proposed the
hashes of at least the same (2f +1) messages. This condition means two things: (1) at least
one correct site delivered those messages (since only f can fail), therefore all correct sites
will deliver the messages (GMcast is a reliable multicast); (2) at least half of the messages
chosen plus one were sent by correct sites (since at most f messages can be sent by failed
sites). Therefore, given this condition all correct sites will agree on a majority of messages
sent by correct sites, and all correct sites will eventually deliver the messages chosen.

5.4.2.8 Site Level Failure Detection

GMP uses a site failure detector to remove failed sites from the group. The Site
Failure Detector module (SF, see Figure 1.1) is an abstraction that can hide several mech-
anisms. Here we consider that the module encompasses two classes of mechanisms:

• Crash FD. Detects if a site crashed.

• Byzantine FD. Byzantine faults depend on the protocols being executed 4. Therefore,
a Byzantine FD must be designed or tailored to monitor a specific protocol and its
Byzantine failures [31]. In this context, the protocol to be monitored is BGM.

4Byzantine or arbitrary faults encompass crash faults, but these are not considered here.
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Additionally to these two kinds of failure detection we could also consider an Intru-
sion Detection System (IDS). An IDS can not detect if a protocol fails, i.e., if it performs
invalid interactions, but can detect if a host is successfully attacked (a fault) or if it is
corrupted (an error). These faults and errors may lead to the site failure, therefore they
can be detected as a preliminary indication that the site may fail. We do not consider this
kind of detector here.

The membership protocol requires a failure detector with Strong Accuracy: no site
is detected failed before it fails. The effective removal of failed sites from the membership
will depend on the failure detector Completeness.

Crash Failure Detector

In asynchronous system it is not possible to distinguish a crashed host from a slow
host. Therefore, crash failure detection in asynchronous systems is intrinsically unreliable.
The TTCB provides a function call to detect crashed local TTCBs, and consequently
crashed hosts (when a host crashes its local TTCB is forced to crash and vice-versa).
However, a site (software) may crash without its host crashing, so that function is not
particularly useful here.

The Crash FD we propose is based on the TTCB Agreement service (Protocol 32).
The correctness of the algorithm relies on a host synchrony assumption: there are maximum
bounds on the times for a process to be scheduled by the operating system and for its
execution. Usually, crash FDs rely on network synchrony assumptions, i.e., in maximum
bounds for message transmissions (timeouts). Host synchrony assumptions have a much
higher coverage in current systems.

Protocol 32 Crash failure detection algorithm (at every host).

1 {all sites start this task with the same tspeak (next instant to say “I am alive”)}
2 loop
3 t ←TTCB getTimestamp();
4 if t > tspeak then {Tmax: maximum time for the task to be scheduled and call TTCB propose}
5 propose ←TTCB propose(elist, tspeak + Tmax, TTCB TBA RMULTICAST, 0); {“I am alive”}
6 repeat
7 decide ←TTCB decide(propose.tag);
8 until (decide.error = TTCB TBA ENDED);
9 for all eid ∈ elist do

10 if bit corresponding to eid in decide.proposed-any is reset then
11 event EFD(site(eid));
12 tspeak ←tspeak + Tdetect; {Tdetect: detection period; Tdetect ≥ Tmax + Tagreement}

The idea of the algorithm is the following. Each site waits for tspeak and tries to
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propose a value to the TTCB Agreement service. Given the assumption above, every
correct site will propose before tstart = tspeak + Tmax, where Tmax is the maximum take
for the site code to be scheduled and run. When the TTCB agreement terminates, every
site will get a mask with the sites that proposed (and also a value and another mask, but
these are not used here). The sites that did not proposed are crashed or malicious (if they
did not propose on purpose) and are detected failed equally by all correct sites.

A hacker with access to a host can try to attack the corresponding site in such a
way that it does not propose in time. This is once again the problem of not being possible
in an asynchronous system to distinguish a delay from a crash, although in this case the
problem are delays in hosts, not in the network. A site that is delayed in such a way is
considered faulty (see Section 5.4.2.1), so the algorithm will detect its failure correctly,
although the failure is not a crash.

The coverage of this algorithm can be improved in several ways. For instance, Tmax

can be increased, or a failure detection can be delayed until a site is detected failed in N

successive rounds. However, these solutions delay the detections.

This failure detector is a perfect failure detector (P), if the assumptions hold:

• Strong Completeness: Eventually every site that fails is permanently suspected by
every correct site.

• Strong Accuracy: No site is suspected before it fails.

Doudou et al. use Muteness Failure Detectors instead of crash [31]. The idea is to
detect not only crashes but also malicious muteness. These detectors detect if a process
q stops sending messages from protocol A to p. We do not detect these malicious failures
because Strong Accuracy would require synchrony assumptions on the network to define
maximum delays 5.

Byzantine Failure Detector

The Byzantine FD is based on the idea of monitored Byzantine failures, i.e., the
FD does not try to detect all Byzantine failures but only a subset that it monitors. De-
tecting all Byzantine failures of a component is usually considered to be impossible, since
it would require a reliable detector capable of observing all component interactions in a
timely manner, and comparing those interactions with the component behavior specifica-
tion. Monitored Byzantine failures are equivalent to Kihlstrom et al. detectable Byzantine

5Doudou et al. use them to solve Consensus so they need only Eventual Weak Accuracy.
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faults, however, not all “detectable” failures are practical to detect, so we prefer the word
“monitored” [41].

The Byzantine FD is a perfect failure detector (P), characterized by the following
two properties:

• Strong Accuracy: No correct site detects that another site failed before the latter
produces a monitored Byzantine failure.

• Strong Completeness: Eventually every site that produces a monitored Byzantine
failure is permanently suspected by every correct site.

This definition imposes a limit on the failures the failure detector can monitor.
Strong Completeness requires that the failure detector monitors only failures that can be
detected by all correct sites. This is not a problem since BGM is based on GMcast that
does reliable multicast, therefore every correct site delivers the same messages.

The classes of failures detected by the Byzantine FD are:

• Semantic failures. A site sends a message whose meaning is incorrect (not as speci-
fied).

• Syntactic failures. A site sends a message whose format is incorrect.

Examples of semantic failures are: GMcast messages sent to a view with an elist

that does not match the membership; propose a view change to remove a site that is not
in the membership. Examples of syntactic failures are: GMcast messages without elist;
GMcast messages with elist in an invalid format.

The Byzantine FD algorithm is simple, so we skip the code for brevity. When a
GMcast message is received, its syntax and semantics are tested and and event is generated
if it is incorrect.

5.4.2.9 Participant Level Membership and Failure Detection

Groups of participants are mapped into groups of sites. This means that the par-
ticipant membership module (PM) uses the services of the site membership module (SM)
(Figure 1.1).

The participant membership protocol is shown in Protocol 33. The protocol sim-
ply adds or removes participants from a bag with the local participants in a group (of
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participants). If the participant is the first to join a group in a site, the site joins the cor-
responding group of sites (line 10). If the group of sites does not exist it is created. If the
site is the last to leave a group of participants in a site, the site leaves the corresponding
group of sites. If it is the last site to leave, the group is destroyed.

As for site failure detection, we consider that the participant failure detector has
Strong Accuracy, i.e., that no participant is detected failed before it really fails. Participant
failure detection is a local matter. If a participant is detected failed it is removed from all
groups.

Protocol 33 Participant Level Membership (at every host).

1 Initialization:
2 LV ←⊥; {contains a bag with the local participants of each group}

3 When participant calls joinGroup(id, participantGroupID, credential)
4 if ∃ participantGroupID entry in LV then
5 if credential accepted then {otherwise an error is returned}
6 LV[participantGroupID] ←LV[participantGroupID] ∪ {id};
7 else
8 establishKeyMServer(); {if not established yet}
9 siteGroupId ←MserverGetSiteGroupId(participantGroupID); {⊥ if does not exist}

10 joinSiteGroup(siteGroupId, credential); {creates a new one if does not exist}
11 if Accepted then {otherwise an error is returned}
12 create LV[participantGroupID]; LV[participantGroupID] ←{id};

13 When participant calls leaveGroup(id, participantGroupID, credential)
14 if credential accepted then
15 LV[participantGroupID] ←LV[participantGroupID] \ {id};
16 if LV[participantGroupID] = ⊥ then
17 delete participantGroupID entry in LV;
18 leaveSiteGroup(siteGroupId); {siteGroupId corresponding to participantGroupID saved}

19 When FDparticipant(id)
20 for all participantGroupId : id ∈ LV[participantGroupID] do
21 LV[participantGroupID] ←LV[participantGroupID] \ {id};
22 if LV[participantGroupID] = ⊥ then
23 delete participantGroupID entry in LV;
24 leaveSiteGroup(siteGroupId); {siteGroupId corresponding to participantGroupID saved}
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6 Conclusion

This deliverable presents the complete specification of the APIs and protocols for
the MAFTIA middleware. The first half of the deliverable starts by describing the in-
terfaces of the runtime environments that will support the middleware architecture and
other components in general, namely the Appia protocol kernel and the Trusted Timely
Computing Base (TTCB). Next, the interfaces of the following modules were introduced:
Multipoint Network; Communication Services; Activity Services; Site Membership; Partic-
ipant Membership. The APIs that were described can be used not only by end-user level
programs, but also recursively by other modules of the architecture. The second half of
the deliverable, explains the various protocols that implement the functionality provided
by both the runtime environments and the middleware modules. In particular, there were
protocols described for the components: TTCB, CS in the asynchronous model, CS with
an asynchronous payload system and support from the TTCB, a transactional support AS,
and a dynamic membership service.

In a next deliverable of WP2, “D11: Running prototype of MAFTIA middleware,
due to 6 month from now, we will provide an implementation of the APIs and protocols
described in this document.
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