Project IST-1999-11583

Malicious- and Accidental-Fault Tolerance
for Internet Applications

Towards a Taxonomy of Intrusion Detection
Systems and Attacks

MAFTIA deliverable D3

Version 1.01

September 6, 2001

Malicious- and Accidental-Fault Tolerance for Internet Applications

Revisions
Rev. Date Comment
0.1 Outline of document

0.2 23.02.2001 Revised outline

0.9 15.06.2001 | Major revision

0.9.1 26.06.2001 | Minor corrections. Modified section 2.1

09.2 2.7.2001 Minor corrections

0.9.3 24.7.2001 Brought the document in sync with D2. Almost final.

0.9.4 1.8.2001 Added information source taxonomy

1.0 23.8.2001 Corrected the English and all the references corrupted by word

1.01 6.9.2001 Added reference to IBM Research Report RZ 3366

Editor

Dominique Alessandri

Contributors

Christian Cachin

Marc Dacier

Oliver Deak

Klaus Julisch

Brian Randell (University of Newcastle upon Tyne)
James Riordan

Andreas Tscharner

Andreas Wespi

Candid Wiiest

Address

IBM Research

Zurich Research Laboratory
Sdumerstrasse 4

CH-8803 Riischlikon
Switzerland

Research Report RZ 3366, IBM Research, Zurich Research Laboratory

il

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Table of contents

1.1
1.2
1.3
1.4

2.1

2.2

23
24

3.1

32

33

34
35
3.6

4.1
4.2

43

CHAPTER 1: INTRODUCTION
IMIOTIVALION ..ttt ettt st b et et e st eete e bt e s b e e s bt e bt emtesaeesbeenbeenseeneeens
F N o) 01 (0T | BTSSRSO UR PRSPPIt
CONEIIDULIONS ...ttt ettt bbb e bt es et et e e sbeeb e e bt ebt e st eseenseneeneen
OULLIIIC. .ttt bt b et a ettt e s bt sb e bt e bt e st et et e sbesbeebeeneent et enten
CHAPTER 2: MAFTIA AND RELATED WORK
MAFTIA TerMINOLOZYveeveevieiieteeieeiesiiesteerteeteetesseesttesteesesssesssessaesseessessesssesseesseesseensenns
2,11 SECULILY POLICY -eenvietieiieieete et ettt ettt ettt ettt s ee st e saeesaeeneeneeens
2.1.2 Generalized MAFTIA terminologycccooeeriieiiieiiiiesieieee et
2.1.3 INtrusion DEtECHION.coiuiiiiieieeie ettt ettt st sb e sae et e et eeae e neeeeens
2.1.3.1 EITOr DETECTION ..ottt sttt
2.1.3.2 Fault DIQROSISeeueeieieiinieeie ettt sttt st eee et et nee e e
2.1.4 Failure MOAEoouiiuiiiiiieeeee ettt sttt
TAXOTIOIMIIES ...ttt ettt ettt b e bbbt e et et b e s bbbt eh e e st et et e st et e abeebeebeeneenseneennen
2.2.1 IDS tAXOMOIMIES ..cuvetitieueeiietetente st eteete it et et e te st eebesbeebe e st ese et et e besbesbeabeebeesteneensensennes
2.2.2 AHACK tAXOMOIMICSeuvitiiieiienieniertertent ettt eet et ettt besbe et e e e sbe st sbesbe bt et enseneennes
2.2.3 Vulnerability taXONOIMIESc.eeeverierierieeteeieeteseeesteeteesessesaesseesseenseensesssesseesseensenns
2.2.3.1 Enumeration of vulnerabilities..........c.ccecereeriinininininiiicicieneenceeeeenee
Evaluation 0F IDSEScc.eiuiiiiiiiiieriieere ettt sttt
Discussion of and motivation for IDS evaluationccccoeeeiiiiiiiiiiieeeeeeee e
2.4.1 Fault-masking by means of redundancy and VOting...........cccceeeereienienienieienieceeees
2.4.2 Failure assumption coverage and correlationocceeoerierieiieienenieceeeeeees
2.4.3 Our approach to IDS evaluation............cc.eevieieiieriieieeie ettt
244 Attack classifiCatiONS.ociruiriiiietieiieiee ettt ettt eae et
CHAPTER 3: ACTIVITY TAXONOMY
ALCHIVILY SCOPE 1.vvveuvieeieiiieiieiteesteeteeteettesteesteesseesseesseassasssesseesseassesssesssesssesseesseesseassenssanssesseenses
3,11 GENETIC ACHIVILY SCOPES...everrrerrrerreeierrerriesteesseeseesesseesseeseessesssasssesseessesssesssesssesseesseenns
3.1.2 SPECIfIC ACLIVIEY SCOPES c.vverurervrerieiiereeiesetestteteenteestesseeseesseessesssesseesseeseensesnsesseenseenes
3.1.2.1 Networking related actiVity SCOPESc.eeverrrerrierrreiierieeiesiereeeeeeeeseeeneeeeeens
3.1.2.2 Host related actiVity SCOPES.....cverrirrrerieriieriieriieieeeeeeeseesseesseseeseeesseesseenseens
3.1.3 Functional aCtiVIty SCOPESccueerueeruerieriiertienieeteeteeteesteeteeneeeneesseesreesseeseeneesneesneeneeenes
3.1.3.1 Networking related functional activity SCOPEScceeruerreereerieriieireieriieieans
3.1.3.2 Host related functional activity SCOPESceevueerirererieerierienieee e
Static aCtiVity ChAraCterISTICS ... co.eitieiieiiertiet ettt ettt s
32,1 ASFECted ODJECL ..ottt ettt ettt
3.2.2 INLEIACE ODJECT..eoueiuieiiiieee ettt ettt ettt ebe et
Dynamic activity CharacteriSTICSuevviiriirierieriiertieieeieeteesteeteeresaesteesreesseessesseesseesseesseessenes
3.3.1 COMMUIICALION ..ottt ettt ettt ettt et sb e st ebe et et e e st b bt ebe et e ensenaennes
3.3.2 Method INVOCALIONovitiiiiiieiieieierieeteete ettt st sb ettt nae s
3.3.3 ACHVILY QUITDULES ...veeueieiieeeieeeieieeieeie ettt ettt et et et e eneeensesnaesseesseenseenneenes
AACK ClaSSTTICATION ...ttt sttt ettt st
DISCUSSION ...ttt sttt ettt et et b e bt eb et e e bt e s b sbe bt eaeeasensennen
(0707 5Te] 13153 o s KPS
CHAPTER 4: IDS TAXONOMY
Intrusion detection SysStem MOAEL..........ccieiiiiiiiiiiieieeee et
N TS 110 OO OSSP PSPPI
4.2.1 Activity scope independent SENSOT AtrIDULESccerveruirieierienieie e
4.2.1.1 Information SOUICE tYPE ...cc.eerveruermierienieeniieieeteeieeetee it et eeeeseeesbeesbeeneeeneeeaees
4.2.2 Activity scope dependent SENSOr attriDULESc.eecververiereeriieieeeeeie st ere e eeeeeeseeens
INtrusion deteCtion ENEINEccvervierieiieiierierie ettt e st et e ebeeaestaestaesseesbesssesseesseesseesseessenns
4.3.1 Activity scope independent ID engine attributes...........ceceeveereeeriierieneeeeeiesieseeeenns
4.3.2 Data pre-processing ID engine attribUtescceecvereverieriereerieniiesieneesieeeeeeeeeeneeens

iii

Malicious- and Accidental-Fault Tolerance for Internet Applications

4.3.3 Instance analysis ID engine attributesccceeevieeiirieriieniieiieie e eeeeens 56
4.3.3.1 Instance analysis leVeIScceeieriieiiieiiiiieiiereee e 58
4.3.3.2 Generic analysis tECANIQUESeecververierieriereeete et siee e eee e eeae e seee s 60
4.3.3.3 Cross-instance analysis teChNIQUESccceevverierieriierieeieeiereeiee e 62
4.4 Representation Of IDS deSCIIPtiONScecuieiirieiieiieeee ettt 64
4.4.1 Database SIIUCTUIEceiiiiurieeieeeeeeeieieeeeeeeeeeeeeeeeeeeeesaaaeeeeeesseassaeeeeeessessnsseeeesssensnees 64
T B 1Yot 3 113 (o) o WS PRRN 66
SO0 1 To] LT3 (o) s AR UORRRN 66
CHAPTER 5: CONCLUSIONS 67
ST S 7o) 415 o 101015 (o) o - JR SRR 67
5.2 FULUIE QITECTIONS ..oeeineviiiiieeee ettt et e et e e et e e e e enae e e e enaeeeeeaaeeeennaeeesennneesennneeeean 67
APPENDIX A: ATTACK CLASSIFICATION 69
A.1 Distribution of dynamic fault charaCteriStiCscceevvereeriirrerieerieri et eae e 69
A.2 Distribution of interface ODJECLS.......ceevieriieiieiieieriieeee ettt e sseenees 70
A.3 Distribution of affected ODJECLSeccverierieiieieeieieeee et 71
A.4 Dynamic activity characteristics with affected 0bjectscccoevirririirieiiieeeen 72
A.5 Interface objects with dynamic activity characteristics........coocvevveririeriereeeeeeeeeee e, 73
A.6 Interface objects with affected ODJECSecuveiiriiiieiiee e 74
APPENDIX B: THE VULNERABILITY DATABASE 77
B.1 Motivation and NISTOTYcoiiiiieieieeie ettt st ae ettt eae e 77
B.2 Database SIIUCTUIEccoouvviiiieeieeeeeeeee et ee ettt e e et e e e et eeeeeeeeseaaeeeessteeeseaseessseeeesanseeesssaeesaanees 77
B.3 VUuInerability deSCIIPHONSccvivieiiesiieitietieieete st esteeteeteeteestaesteeseessessaessaesseenseessesssesseesseens 78
B4 RESUIES .ottt e et e e et e et e e et e e eaa e e e e taeeeeenaaeeeaaaes 80
B.4.1 Attack ClasSifICAtIONoiiiuiiiiiiieie et e e e e e e e eeeaeee s 81
B.4.2 VUINerability DIOWSETcccverieriieiieieeteeteieeteeie ettt ae e see st e sseenseensesneesseenseens 82
B.4.3 Integration with SECUTItY SOFtWAIE........ccceeruieriieiieieeiecieesieee et 84
APPENDIX C: EXAMPLES OF IDS CHARACTERISTICS WITH RESPECT TO ACTIVITY
SCOPES 85
C.1 IDS SENSOI CHATACLEIISTICS ..vvvieiiiiieiiieieeeeeeieieeeeeeeeeeeeteeeeeeeeesessaeeeeeeessessaasereeeesssasnsareeeeesesnnnees 85
C.2 ID engine data pre-processing CharaCteristicsccuerieruerieriereereeie et ie e 88
C.3 ID engine instance analysis CharaCteriStiCsceouerirruerereririetieieie e et eeee e 89
C.3.1 Instance analysis IEVELScccioiiirieieieee e et 89
TABLES 93
FIGURES 95
REFERENCES 97

v

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Chapter 1: Introduction

In recent years, an increasing number of intrusion-detection systems (IDSes) have become
available [Sobire98]. This development has been driven, among other things, by the growing
number of computer security incidents [CIN0799, Gross97, Howard97, Kumar95s,
LSMTTF98, Neuman98b, NeuPar89] which have highlighted the need for organizations to
protect their networks against adversaries [Sundar96]. The issue of protecting networks and
making them secure and reliable has been addressed in many publications, which have
analyzed the problems and made pertinent recommendations [BeGlRa98, Neuman98].
Intrusion detection (ID) is widely regarded as being part of the solution for protecting today’s
networks. However, by generating false alarms or not recognizing attacks, IDSes may fail.
This, together with the fact that today’s networks are not only distributed but also highly
heterogeneous, makes it desirable to deploy multiple instances of diverse IDSes in order to
achieve adequate protection of such networks. Last but not least, an ID architecture
embodying multiple IDSes has to achieve adequate compliance with an organization’s
security policy and should itself be tolerant to intrusions.

1.1 Motivation

This work pursues two goals. The first is the reduction in the number of alarms a human
security officer has to handle. This goal is motivated by the fact that IDSes tend to generate
numerous alarms (reports of suspicious activities) that need to be collected and analyzed. This
is an issue because a substantial number of these alarms (up to 99% and more for some
IDSes) are false alarms, and these IDSes may still miss real attacks [DCWMS99,
LFGHKMOO0]. Experience has shown that the processing of IDS alarms becomes even more
challenging when considering a large-scale deployment of IDSes.

The second goal is long-term and is to provide a framework that allows the efficient, reliable,
and intrusion tolerant operation of a large-scale ID architecture as foreseen within the
MAFTIA context. This document describes a foundation for the evaluation of IDSes in terms
of their strengths and weaknesses. These evaluation results will allow us to validate and
improve ID-architecture designs so that we can identify measures to process and interpret IDS
alarms (fault diagnosis), maximize the coverage in terms of ID functionality, and eliminate
common failure modes—thereby making the ID architecture tolerant to intrusions.

More specifically, the acquired knowledge will enable us to develop ID alarm correlation
rules that allow us to recognize and eliminate many false alarms and to interpret the semantics
of alarms. In this context the detailed knowledge of an IDS’ strengths and weaknesses is
highly relevant.

Like systems in general, IDSes can be evaluated in various ways, such as benchmarking or
modeling. We feel that benchmarking real IDSes [DCWMS99, LFGHKMO00, LHFKDO00] is
not generic and systematic enough for our evaluation needs. John McHugh has criticized the
benchmarking approach for exactly these reasons [McHugh00, McHughOOb]. Because of
these insufficiencies we are investigating another approach which consists of comparing and
evaluating IDSes at the level of their specification rather than at the level of their
implementation.

1.2 Approach

Our approach describes IDSes by formalizing their characteristics, we do not attempt to
describe the implementation of the ID algorithms used. Instead our approach aims at
describing the capabilities that result from the algorithms used. These resulting capabilities
shall then be used to describe the criteria an IDS has to meet in order to detect a given attack,

Malicious- and Accidental-Fault Tolerance for Internet Applications

or more generally, to process activities observed. That is to say we are describing attacks and
harmless activities in terms of the IDS characteristics required for their detection, which is
what we described in [Alessa00].

One of the advantages of this approach is that it enables us to evaluate a given IDS for its
ability to detect a given attack even in the case where the corresponding attack signature has
not yet been written for the IDS considered. Furthermore this approach is more generic and
requires a relatively limited effort compared to the modeling and description of IDS
implementations.

This approach builds upon the novel concept of activities and the description of IDSes.
Clearly, the choice of activities and scheme used to describe IDSes is crucial. In this
document we describe the results achieved so far. These results build the foundation of our
approach to IDS evaluation. They namely include a scheme to describe IDSes and a
classification of attacks that allows us to identify a representative set of activities.

While doing the work described here, the experience and knowledge we have gained
maintaining IBM’s extensive vulnerability database VulDa for several years, has proven
highly valuable. In addition we were able to use the database to validate results achieved and
described here by a classification of attacks.

1.3 Contributions

Although the ID architecture just mentioned profits from concepts developed within the
MAFTIA context, this work contributes to MAFTIA a taxonomy of detectors for errors that
may lead to security failure and for security failures. A clear understanding of these detectors
is important when building a dependable distributed system—especially when dealing with
malicious faults.

In addition, the work presented here contributes several items to the field of ID that are likely
to build the foundation for further work in the domain of IDS evaluation.

The first item, a systematic scheme to describe IDSes, is novel to the field of ID. Thus far
IDSes have been characterized and described based only on benchmarks [LFGHKMOO,
LHFKDO0O0] and product descriptions [Jackso99]. It also goes further than existing taxonomies
of IDSes [Axelss00, DeDaWe00, DeDaWe99] by describing IDSes in a much finer
granularity.

The second item is a generic taxonomy of activities based on criteria that are directly relevant
to the ways IDSes analyze their observations for signs of security threats. This taxonomy is
then used to create a classification of attacks. The resulting taxonomy and classification are
fundamental to our approach and do not yet exist in a comparable form.

It might be worth mentioning that the items described above aim at building the foundation
for further work in this field.

1.4 Outline

We start the description of our work by a discussion of related work and fields in Chapter 2.
In the same chapter we also introduce the terminology used and discuss the motivation for the
approach proposed in more detail.

In Chapter 3, we introduce and develop so-called activity assumptions that are defined by
means of an activity taxonomy that is developed with the classification of activities relevant
to security in mind. This enables us to systematically identify the various classes of security
threatening or seemingly security threatening activities that can be used for the evaluation of
IDSes. The taxonomy developed in this chapter is validated by a classification of attacks that
are described in IBM’s vulnerability database VulDa. The structure of VulDa is described in
Appendix B, whereas the attack classification is extensively discussed in Appendix A.

Towards a Taxonomy of Intrusion Detection Systems and Attacks

In Chapter 4 we develop a description scheme for IDSes based on a taxonomy—focusing on
capabilities IDSes have.

In Chapter 5 we draw the conclusions based on the work described and provide an outlook on
future work—namely the evaluation of IDSes.

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Chapter 2: MAFTIA and Related work

In line with the top-level MAFTIA goals, this work contributes to the concepts developed in
the ID community and concepts originating from the dependability community. The two
research fields, although overlapping in significant areas, have different roots. ID has its roots
in the eighties and got real traction with the occurrence of the Internet worm [Spaffo88] and
the seminal work by D. Denning [Dennin87]. The basic concepts were however discussed
earlier e.g., Anderson [Anders80].

For the work described in this document the dependability concept known as fault-
assumptions [LaAvKo092] is of high relevance. The goal of fault-assumptions is to identify all
the possible faults that might be activated within a system. The knowledge of all the possible
potential faults is a prerequisite to analyze the expected mean time to failure of a given
system, for example.

The dependability field has also developed a concept that supports the modeling of systems
[Dobson89] such that the system modeled can be evaluated in a systematic way. This is
mainly based on the modeling of a system at several hierarchically dependent levels of
abstraction and a model of the communication among the various components.

The combination of those concepts—fault assumptions and system modeling—provides us with
a powerful technique that seems to be well suited to systematically evaluate IDSes.

2.1 MAFTIA Terminology

In the MAFTIA deliverable D1 [D1Maf00], Section 3.2, dependability concepts have been
discussed with respect to malicious faults. These concepts have then been generalized in the
MAFTIA deliverable D2 [D2Maf01] with respect to the concept of a security policy. These
generalizations are required because in the security domain, or specifically the ID domain, a
common, accepted, and unified terminology does not exist. In addition most existing work,
such as the glossary initiated by the NSA (National Security Agency) [NSA98], is not based
on concepts as rigorous as the ones used in the dependability field i.e., by MAFTIA.

In order to make this document self-contained, we are summarizing the definitions made in
MAFTIA D2 [D2Maf01] and MAFTIA D1 [D1Maf00]. We do so by first introducing the
concept of security policies, which then serves as a basis for definitions of terms such as
security failure.

2.1.1 Security policy

The following section is taken largely from Section 3.1 of the MAFTIA deliverable D2
[D2Maf01].

Meaningful discussions on security related topics, often require reference to a security policy.
Unfortunately, there are many different senses of the term applied to many different levels of
abstraction.

In the highest-level sense, the high-level security policy describes the system, the properties it
should have, and who (at least in title) is responsible for what; it includes the security portion
of the specification of the systems function.

Systems are recursively composed of subsystems; a system’s specification recursively
determines specifications of the subsystems.

Eventually, through recursive refinement, specialization, and implementation, the systems
behavior is determined. This process includes the creation of guidelines, processes, site
descriptions, practices, specifications, mechanisms, implementations, and configurations.

Malicious- and Accidental-Fault Tolerance for Internet Applications

At the lowest level, we can view the system as a (very large) finite state machine in which the
black dot as shown in Figure 1 is the state disallowed by the security policy (i.e., the failure-
state).

©0—0—0
AN

®@ 0~-0

e Teo—e
e

o ¢ o/
®e eo—eo

Figure 1 — Low level security policy

At this level, the security policy is the collection of rules according to which the system’s
security state should evolve (see also Figure 1). In standard cases where one talks of security
policies, separate from functional properties, the security state can be viewed as a (very large)
matrix of subject privileges on object operations. The security policy rules specify the
legitimate evolutions of this state.

For our purposes, we will define a security policy as:

1. the security properties that are to be fulfilled by the system (high-level views);
2. the rules according to which the system security state may evolve (low-level views).

The security policy properties are defined in terms of the security attributes required for the
services delivered to the various stakeholders of the system. A security failure occurs when a
property of the intended' security policy is violated. Such a failure may occur in two ways:

1. the rules are incoherent, so a security property violation can occur even if the rules
are respected (i.e., the case illustrated in Figures 5 and 3), or

2. the rules are broken (e.g., due to an intrusion or other fault) so the transitions between
states are different to those of the state machine inferred from the rules.

In-between the high and low-level views, one can view the system with different levels of
resolution. At a slightly higher level than the finite state machine view a system comprised of
three different machines, one of which supports two security domains, might look like Figure
2.

N\

N\

Figure 2 — System with a structured security policy

' We add the adjective intended to cater for the case where the security policy is incorrectly specified.

Towards a Taxonomy of Intrusion Detection Systems and Attacks

In this system, failures of a sub-component are errors for the whole.

For our purposes, it is important to think of the security policy as being the recursively
structured complete collection of these views. Doing so corresponds naturally with the
recursive structure of dependability practices and provides a clean framework in which to
discuss security as a whole.

2.1.2 Generalized MAFTIA terminology

This and the following two sections represent a summary of the definitions developed in
MAFTIA D1 [D1Maf00] that were then generalized in MAFTIA D2 [D2Maf01]. These
generalizations are based on the concept of the security policies just introduced. This work
has consecutively resulted in the following definitions:

e [Event-something that happens or takes place [OMED92]; a change in state.
e Activity—event or a sequence of events within a given context.

e Activity scope—defines the context to which a given activity applies. Loosely
speaking, one can compare activity scopes to the abstraction levels of security
policies.

o Failure—when the delivered service deviates from fulfilling the intended function.
e Failure (security ~)—violation of a security property of the intended security policy.
e FError—that part of the system state that is liable to lead to failure.

e Fault — the adjudged or hypothesized cause of an error.

o Security policy threatening activity—activity that represents an external fault which
causes an error that may lead to security failure.

e Attack—a malicious activity threatening the security policy. It is therefore a malicious
external fault.

e [ntrusion—a malicious activity threatening the security policy that leads to a security
failure i.e., to a security policy violation. It is therefore a malicious external fault that
leads to failure.

o JVulnerability—an accidental fault, or a malicious or non-malicious intentional fault in
the requirements, the specification, the design or the configuration of the system, or in
the way it is used. The presence of a vulnerability may enable an error to lead to
security failure.

o State (system ~)—a condition of being, with respect to a set of circumstances
[LaAvKo092].

e Alarm-report of an error that may lead to security failure, optionally including
indications whether the error led to security failure. The report may include
diagnostic information about the fault i.e., the security policy threatening activity that
led to the generation of the report.

e False negative—event corresponding to the occurrence of an error that may lead to
security failure or a security failure that is not detected as such. This means that no
alarm is raised due to either a lack of coverage or to excessive latency—also called a
miss.

e False positive—event corresponding to an alarm generated in the absence of an error
that may lead to security failure or a security failure i.e., a false alarm.

o True positive—correct generation of an alarm. This means that an error that may lead
to security failure or a security failure has been correctly detected, recognized, and
reported.

o True negative—correct decision to not rate an activity as causing an error that may lead
to security failure or a security failure.

Malicious- and Accidental-Fault Tolerance for Internet Applications

Please note that a security policy often only defines security failure states explicitly. Often
error states that may lead to security failure are defined implicitly only. The definition of what
is considered as being an error that may lead to security failure depends on the way the
enforcement of the security policy is verified. Loosely speaking, the definition of such errors
depends on how sensitive one is with respect to the security policy and consequently how
sensitive one is with respect to signs of activities threatening the security policy.

activities

activities
threatening security
policy (e.g. attacks)

activities
violating security
policy

(e.g. intrusions)

Figure 3 — Activities vs. security policy

Figure 3 illustrates the relation of activities with respect to the security policy.

2.1.3 Intrusion Detection

When discussing ID and IDS one of the first and most important things one should mention is
that the term intrusion detection is misleading in the sense of its common use.

Clearly the motivation for deploying IDSes is to detect evidence of maliciously intended
activities i.e., attacks. However, it is not possible for an IDS to determine or judge the infent
of the activities it is observing. Instead, IDSes are verifying whether the observed activities
are threatening the security policy. In other terms IDSes are detecting errors that may lead to
security failure, whereas the capabilities and the configuration of the IDS implicitly define
these errors. Furthermore IDSes are performing fault diagnosis by providing information with
respect to the activity that caused an error that may lead to security failure.

This discussion naturally leads to the following definitions:

e intrusion detection—concerns the set of practices and mechanisms used towards
detecting errors that may lead to security failures and security failures (including
anomaly and misuse detection) and diagnosing intrusions and attacks.

e intrusion detection system—is an implementation of the practices and mechanisms of
intrusion detection.

Thus, we can divide the intrusion detection system along dependability lines into error
detection and fault diagnosis.

2.1.3.1 Error Detection

While it is the aim of the intrusion detection system to discover the presence of intrusions
(which by definition are malicious), the error detection portion of the facility is merely able to
observe and analyze states.

The relevance of malice in error detection is simply in setting requirements. If we are able to
dependably detect errors caused by malicious faults, then we are implicitly able to dependably
detect errors caused by non-malicious faults. The converse is not true.

Towards a Taxonomy of Intrusion Detection Systems and Attacks

The nature of the fault causing the error is otherwise not relevant for three reasons:

1. The nature of the adjudged cause of error has no effect on the means used to detect
the error.

2. Determination of whether the cause of error has a malicious nature, is not a
computational matter (rather, it is a concern of psychology).

3. We would not want to squelch notification of a dangerous error state merely because
the adjudged cause was not deemed malicious (thus, not an intrusion).

Hence, the error detection portion of intrusion detection is the observation and analysis of the
system toward detecting states that are error-states as defined by the security policy.

Finally it is important to note that often while looking for ‘a thing,” one looks for evidence,
side-effects, precursors, conduits, and habitats of the thing. As such the definition would
naturally include detection of suspicious activities, vulnerability scanning, and configuration-
checking as belonging to error detection.

2.1.3.2 Fault Diagnosis

It should be noted that most currently available intrusion detection systems do not include any
intrusion diagnosis mechanisms. The explicit recognition of the fact that misuses and
anomalies are indeed errors that can be caused by any sort of fault, is an initial result of the
MAFTIA project. Indeed, a good intrusion detection system requires such a fault diagnosis
mechanism to minimize the rate of false alarms caused by errors due to other classes of faults
(e.g., design faults in the reference for defining “misuse” or “anomalies,” accidental
interaction faults such as typing a password incorrectly etc.).

2.14 Failure model

This section roughly summarizes and generalizes the failure model as introduced in Section
4.2 of the MAFTIA deliverable D1 [D1Maf00]. This model was then generalized with respect
to security policies in MAFTIA D2 [D2Maf01].

The goal of the failure model is to enable us to systematically analyze a given system for its
failure modes i.e., all the possible ways a system can fail. This is achieved by making so-
called failure assumptions for every system component [D1Maf00, D2Maf01, LaAvKo092,
MeyPra87, PBSVWS8S, Powell95].

Activity
Initiator

Prevention of
activity threatening
security policy
(e.g. attack
prevention)

Error detection & Error detection &
fault diagnosis fault diagnosis
Removal (e.g. Intrusion detection) (e.g. Intrusion detection)

% %J ; % %/ /
Security
policy
violation
(fault)
(e.g. intrusion)
Error
that may lead to

Security
security failure

Security policy
threatening

activity (fault)
(e.g. attack)

failure

Prevention of Tolerance of

: vulnerability security policy security policy
Dgs(le?gteorr/ Tolerance violation violation

P (fault) (e.g. intrusion (e.g. intrusion
prevention) tolerance)

Vulnerability
prevention

Figure 4 — The generalized composite failure model of MAFTIA

Figure 4 shows the failure model as defined in MAFTIA D2 [D2Maf01]. This model reflects
the fact that an attack can only be successful i.e., violate the security policy, if the

Malicious- and Accidental-Fault Tolerance for Internet Applications

corresponding vulnerability is present and if no additional precautions have been taken to
prevent the security policy violation.

2.2 Taxonomies

Before starting the discussion on IDS attack and vulnerability taxonomies and classifications,
we have to define the terms taxonomy and classification:

e (lassification—systematic arrangement, in groups or categories, according to
established criteria [Webster].

e Taxonomy—the study of the general principles of scientific classification [Webster].

We believe this definition to be necessary as the two terms are often confused—especially in
existing attack and vulnerability taxonomies and classifications. An extensive discussion of
taxonomies can be found in Krusl’s Ph.D. thesis [Krsul98]. Krsul provides an extensive
discussion of taxonomies and classifications in general and with respect to security. In
particular, he explains their differences as follows,

...a taxonomy includes the theory of classification, including the procedures that
must be followed to create classifications, and the procedures that must be
followed to assign objects to classes. [Krsul98], p. 22.

Besides having a specific goal in mind the creator of a classification needs to obey some basic
criteria to ensure that the resulting classification is sound. However, the choice of these basic
criteria is not unambiguous either. As an example, in [LinJon97] Lindqvist and Jonsson
propose a different set of criteria than the one by Howard in [Howard97]. In summary one can
say that at least the following criteria should be fulfilled to make a classification sound:

e Mutually exclusive—the categories used have to be mutually exclusive.

o Exhaustive—the classification categories need to cover the entire scope at which the
classification is aimed.

e Repeatable—the classification criteria need to be clear and unambiguous such that the
classification can be repeated.

These criteria of course imply that the terminology used needs to be clearly defined.

2.2.1 IDS taxonomies

Taxonomies of IDSes and ID related technologies are a rather recent development and date
back only to 1999. The taxonomy proposed by Debar et al. [DeDaWe99] is probably one of
the first real IDS taxonomies. Other taxonomies have since been published, such as the one
proposed by Axelsson [Axelss00] and more recently, one proposed by Halme and Bauer
[HalBau0O0] are even more recent. However, the classification of IDSes has been common for
a while already and has been realized in the form of surveys such as the work by Lunt
[Lunt88], Jackson [Jackso99] and others [Amoro99, EsSaPi95, MWSKHH90].

Figure 5 shows the taxonomy proposed by Debar et al. [DeDaWe99]. This taxonomy was
later extended and refined by Axelsson [AxelssO0] and by Debar et al. themselves
[DeDaWe00].

Within the context of this work the most important elements of the taxonomy by Debar et al.
are the audit source location and even more the detection method. The detection method is
used to distinguish IDSes into so-called behavior-based and knowledge-based systems.

Behavior-based systems, also called anomaly detection systems, have no knowledge of
specific attacks. However, they have been provided with knowledge of the behavior of the
monitored system during normal operation. Such knowledge has been acquired either by
extensive training of the system [DeBeSi92, JLADGJ93] or by other more systematic

10

Towards a Taxonomy of Intrusion Detection Systems and Attacks

approaches such as those implemented in daemon-watcher by Wespi et al. [WeDaDe0O,
WesDeb99]. Behavior-based systems have the important advantage that they do not require a
database of attack signatures that needs to be kept up-to-date. The drawback of behavior-
based systems is that the alarms they generate are meaningless because generally they cannot
provide any diagnostic information (fault-diagnosis) such as the type of attack that was
encountered. In other words they can only signal that something unusual happened.

Knowledge-based systems, also called misuse detection systems, operate based on a database
of known attack signatures. Whenever they encounter an activity matching a signature that is
stored in the database, the corresponding alarm is generated. The advantage of such systems is
that their alarms are meaningful e.g., they contain diagnostic information about the cause of
the alarm. On the other hand the main drawback of these systems lies in the system
component that enables the generation of meaningful alarms i.e., the database. The database
of attack signatures needs to be kept up-to-date, this is a tedious task because new
vulnerabilities are discovered on a daily basis. However, most commercial systems used today
e.g., [CiscoNR99, ISSNet99], are knowledge-based systems.

The distinction of the audit-source location is an important prerequisite because we shall
develop a taxonomy and methodology that enables us to precisely describe the sensor portion
of an IDS. As to be explained in more detail in Chapter 4, we describe the characteristics of
an IDS with respect to a given scope. We thereby take into account the fact that an IDS may
be powerful for a certain application and less powerful in another.

BEHAVIOR
DETECTION |— BASED
METHOD R
|~ /KNOWLEDGE
BASED 5
I
> &
PASSIVE
BEHAVIOR | —" (;% 5
ON —
m
DETECTION | ™[crve gy ;(22
INTRUSION a4z
DETECTION 9]
SYSTEM HOST LOG
AUDIT |_—"|FILES
SOURCE -
LOCATION | ™, [NETWORK
PACKETS
- 0z
IO
CONTINUOUS ’é z
USAGE |_—"|MONITORING 5 =
N (@]
FREQUENCY —~—.[PERIODIC 3 8
ANALYSIS 9z
97

Figure 5 — IDS taxonomy by Debar et al.

It is worth mentioning that the revised IDS taxonomy by Debar et al. [DeDaWe00] as shown
in Figure 6 takes into account the defection paradigm implemented by the IDS. If the
detection paradigm of an IDS is state based the IDS is trying to recognize a given system
state as being an error state or as being a failure state. Transition based IDSes monitor a
system for any state transition that represents an attack or an intrusion.

Moreover Debar et al. are refining the audit source location by adding the categories
application log files and IDS sensor alerts. This modification takes into account the
differences in granularity of log data generated on a host. Furthermore, the addition of IDS

11

Malicious- and Accidental-Fault Tolerance for Internet Applications

sensor alerts reflects the tendency of hierarchical ID architectures, where several IDSes send
their alerts to a higher level instance where the alerts are analyzed and possibly aggregated.
The resulting alerts are then sent to the next higher instance or are presented to the security

officer.

BEHAVIOR
DETECTION |— BASED
METHOD
| [KNOWLEDGE
BASED
PASSIVE
BEHAVIOR | — "|ALERTING
ON
DETECTION | ™ [ACTIVE
RESPONSE
HOST LOG
FILES
NETWORK
INTRUSION AUDIT //_—|PACKETS
DETECTION SOURCE
SYSTEM LOCATION N~ [APPLICATION
LOG FILES
IDS SENSOR
ALERTS
STATE NONPERTURBING
DETECTION | IBASED EVALUATION
PARADIGM |~ [TRANSITION PROACTIVE
BASED EVALUATION
CONTINUOUS
USAGE MONITORING
FREQUENCY ERoDIC
ANALYSIS

Figure 6 — Revised IDS taxonomy by Debar et al.

Based on the work by Debar et al., Axelsson [Axelss00] refined—using different terms—the
detection method. Moreover he regrouped and extended the remaining categories into what he
calls ‘a taxonomy of system characteristics.’

As in Debar et al., Axelsson classified a number of IDSes according to his taxonomy. Some
of the systems appear in more than one category— raising the question whether his taxonomy
is ambiguous. Axelsson gives a plausible explanation for this by stating,

...this is not because the classification is ambiguous but because the systems
employ several different principles of detection. [Axelss00], p. 7.

This turns out to be an important statement—especially when looking into the detailed
description of IDSes envisaged by this work. It shall soon become apparent that this statement
also applies to the work presented here.

2.2.2

As mentioned, attack taxonomies and the resulting classifications are of interest to us because
we are considering using an attack classification as the foundation for the evaluation of
IDSes. Computer security attacks and vulnerabilities have been classified in many ways
however, no commonly accepted reference classification exists as yet.

Attack taxonomies

As described in detail by Howard [Howard97] many attack classifications are based on
empirical lists or simple lists of terms. The weakness of these classifications is that often the

12

Towards a Taxonomy of Intrusion Detection Systems and Attacks

terms used to classify are not mutually exclusive and/or properties of vulnerabilities and
properties of attacks are not clearly separated. An example of such classification is the one
proposed by Cohen [Cohen95].

One of the earliest works is one by Neumann and Parker [NeuPar89]. In this work the authors
classified data from about 3000 incidents which they had collected over 20 years according to
nine different computer misuse techniques. Those categories are, as the authors state
themselves, not mutually exclusive. Based on [NeuPar89], Neumann came up with an
extended scheme [Neuman95] where he also incorporates the vulnerability exploited and the
impact of an attack.

Other approaches, such as the one proposed by Howard [Howard97], classify attacks
according to several sets of categories concurrently. Lindqvist and Jonsson [LinJon97]
proposed a similar approach by classifying attacks according to the two sets of categories
‘intrusion technique’ and ‘intrusion result.” In his Ph.D. thesis [Kumar95] Kumar introduces a
classification based on attack signatures used within the IDS IDIOT [CDEKS96]. This
classification is based on the type of observation required to be able to detect a given attack.
As is explained later in this document, this is interesting for this work as it comes relatively
close to the goal of our classification.

While considering all these different approaches for the classification of attacks we were able
to identify the following classification categories:

e List of terms—a wide range of terms. Examples: [Cohen95, IcSeV095]

o Tools—type of tool used to execute an attack e.g., script, distributed tool etc. Example:
[Howard97]

e Prerequisites—the prerequisites to be met before an attack can be staged successfully
e.g., access required, resources required, skills required etc. Examples: [CheBel94,
JiSiIr00, Longst97, NeuPar89]

e Technique-the technique used to run a given attack e.g., spoofing. Examples:
[LinJon97, NeuPar89, Stalli95]

e Detection technique—the technique or type of signature required to detect a given
attack. Example: [Kumar95, KumSpa95]

o Impact-the immediate damage caused by a successful attack i.e., an intrusion.
Examples: [CheBel94, Howard97, JiSilr00, LinJon97, NeuPar89, SinSig01]

It is worth noting that many attack classifications also include information on the
vulnerabilities exploited, characteristics of the attacker, and his/her objectives etc. These
inclusions let them become general classifications of security issues rather than attack
classifications.

2.2.3 Vulnerability taxonomies

As already indicated, attacks are tightly linked to vulnerabilities. To successfully launch an
attack, the corresponding exploitable vulnerability must be present in the system. This close
relationship may cause confusion when defining a classification. One example is the
classification proposed by Howard in [Howard97] where he proposes a ‘computer and
network attack taxonomy’ that contains categories describing the vulnerability exploited. This
is not to say that combining attack and vulnerability characteristics is not viable, but they
should be distinguished clearly to avoid confusion.

Similar to attack classifications, the classes used for a vulnerability classification are
determined by the goal pursued. For example, if the genesis of a vulnerability is of interest,
classes describing the genesis of the fault will be introduced. This is clear in the classification
proposed by Landwehr et al. [LBMW94]. Their work is based on hierarchical categories i.e.,

13

Malicious- and Accidental-Fault Tolerance for Internet Applications

a decision tree. However, as explained by Howard [Howard97] this classification is
ambiguous because vulnerabilities may qualify for several categories concurrently.

In his Ph.D. thesis Krsul [Krsul98] discusses seventeen different vulnerability classifications.
We are not going to reproduce the whole discussion here, rather, we provide an overview of
the various classes chosen for those classifications:

o Genesis—The way the fault was introduced. Examples: [AsKrSp96, Aslam95,
LBMW94, Longst97].

o Time—When a fault was introduced e.g., design phase, coding phase, maintenance etc.
Example: [Howard97, LBMW94].

e Cause—The cause for the introduction of a fault e.g., wrong algorithm or parameter
used etc. Examples: [Knuth89, Longst97].

e Removal-The steps to be taken to remove a given fault. Example: [DeMMat95].

e Type-The type of operation that is faulty e.g., decision making, data handling etc.
Examples: [BasPer84, KrSpTr98, OstWey].

o Location—The location of the fault e.g., the faulty object, protocol, device etc.
Examples: [DLAR91, KrSpTr98, LBMW94, Tanenb87].

e Threat-The potential threat represented by a vulnerability. Example: [KrSpTr98,
Power96].

The threat category is highly related to the impact category introduced in Section 2.2.2, as are
attacks and vulnerabilities in general. A given attack does not necessarily exploit a given
vulnerability in the most malicious way i.e., the threat represented by a given vulnerability is
not necessarily fully exploited by an attack attempting to exploit the vulnerability.

2.2.3.1 Enumeration of vulnerabilities

A non-classifying approach to deal with vulnerabilities is to enumerate them. Recent efforts to
enumerate vulnerabilities are driven by the common need for unique identifiers for
vulnerabilities when handling security incidents, reporting the finding of vulnerability on a
given system and also when reporting the observation of an attack i.e., when an IDS is
generating an alarm [DeHuDo00, WooErl01]. The latter however, is less obvious as attacks
may not always be mapped onto specific vulnerabilities and vice-versa.

Common Vulnerabilities and Exposures (CVE) [ManChr99] is a security industry-wide effort
coordinated by the MITRE Corporation [CVE99]. CVE is a dictionary that aims at facilitating
the sharing of data across separate vulnerability databases and security tools. While CVE may
make it easier to search for information in other databases, CVE should not be considered as a
vulnerability database on its own merit.

Another well-known effort is the Bugtraq ID. Bugtraq IDs are assigned based on
vulnerabilities as published on the security mailing list bugtraq which is operated by the
SecurityFocus [SecFoc] web site. CVE entries and Bugtraq ID database records both refer to
their respective counterparts.

However, CVE entries, Bugtraq Ids, nor any other identifiers, are assigned based on the same
principles.

Example: 4 design flaw recently discovered in the Microsoft IIS Webserver sofiware enables
a remote user to execute arbitrary commands on the machine running the webserver
software. In this particular example CERT released the advisory CA-2001.12 [CA1201]. The
same vulnerability has been assigned the Bugtraq ID 2708 [SF2708] by SecurityFocus and
the CVE candidate name CAN-2001-0333 [CVE033301] by the CVE editorial board. Once
the review process of the CVE candidate entry is finalized the name of the entry will be
changed to CVE-2001-0333—provided that the entry is not rejected, which seems very unlikely
in this severe case.

14

Towards a Taxonomy of Intrusion Detection Systems and Attacks

2.3 Evaluation of IDSes

It can be expected that IDSes will be evaluated and compared based on the set of CVE and
Bugtraq IDs that they are able to deal with in the near future. The various enumeration efforts
will ease the comparison of IDS, but are not able to take an IDS’ quality with respect to
failure i.e., false positives and false negatives, into account. An evaluation that is based on
IDS features such as the extensive work presented by Jackson [Jackso99] suffers from the
same problem, but at least provides good overview for a series of IDSes.

Another more pragmatic approach to evaluate IDSes is the benchmarking of IDSes as done by
Lippmann et al. [LFGHKMO00, LHFKDO0O] in the so-called Lincoln Lab Experiment and
others [DCWMS99]. A critique of the Lincoln Lab Experiment by McHugh [McHughOO,
McHughOOb] shows that the experiment fails to provide a picture of IDSes that is fine grained
enough. This is mainly due to limits of testing and the differing signature-sets of IDSes. In
fact an IDS that happens to detect most of the attacks tested by the Lincoln Lab Experiment
but which otherwise has a small signature base may get a high rating. In contrast, another IDS
having a larger and different signature-set and which may be better, from a technical point of
view, could get a lower rating because attacks used in the Lincoln Lab Experiment are
missing. These attacks are missing simply because the signatures required to detect these
attacks are not contained in the signature-set. Among others, these insights led to the proposal
that the IDS evaluation method should be developed based on this work.

Existing evaluation techniques are not well suited for the systematic IDS characterization
required in the context of this work. As we have seen, existing approaches are either operating
at a level too high or too low, do not take the issue of false positives into account at all
[Jacks099], or are not generic and systematic enough [LFGHKMO00, LHFKDO00, McHugh0O0,
McHughOOb]. In other terms existing efforts have not been designed to enable an analysis of
IDSes as it is envisaged by the continuation of this work.

2.4 Discussion of and motivation for IDS evaluation

As indicated in Section 1.1, it is the goal of this work to build the theoretical foundation for
large-scale intrusion detection architectures. Such architectures are needed as soon as
intrusion detection is used to protect large intranets instead of small so-called Demilitarized
Zones (DMZ). In that context, and in the near future, each desktop will eventually be
instrumented with some host-based ID capability.

When considering such a scenario one can easily identify the following issues that are related
to intrusion detection architectures:

e Low sensor quality—It is well-known that most IDSes generate an overwhelming
number of false positives—sometimes 99% (or more) of all the alarms are false alarms
[Axelss00, Julisc00, MCZH99, Schnei00].

o Sensor diversity—The semantic of alarms as generated by IDSes is sensor-dependent,
i.e., it is defined by the generating IDS. Even though a common naming scheme for
attacks is in the process of being established [CVE99, DeHuDo00, ManChr99] (see
also Section 2.2.3.1) the conditions under which a given IDS is raising a given alarm
are not defined. When considering behavior-based IDSes the issue becomes even
more challenging as the alarms generated by such systems usually express the fact
that an abnormal behavior has been observed—without providing any further
information on the type of attack that caused the alarm to be generated.

e Alarm context data diversity—The additional data provided by an IDS along with an
alarm vary depending on the type of IDS (e.g., the information source monitored by
the IDS) and its implementation.

e IDS placement—In order to achieve the required intrusion detection coverage within a
network numerous instances of different IDSes are required. The location of these

15

Malicious- and Accidental-Fault Tolerance for Internet Applications

IDSes is critical and has to take into account the strengths and weaknesses of every
IDS type deployed.

e Management-This type of intrusion detection architecture requires a flexible
management infrastructure.

As mentioned in Section 1.1, this work focuses on the issues that concern the processing of
alarms as generated by IDSes, in other words all issues listed above but the management one.

One can expect IDSes to mature, but we expect IDSes to continue generating a significant
number of false positives. This issue is partially being addressed by the development of
highly specialized sensors that focus on very specific problems only and are application
specific, such as WebIDS [Almgre99]. However, the introduction of highly specialized IDSes
increases the issues of sensor diversity, alarm context data diversity, and sensor placement
even further. Moreover, the recognition and identification of complex attacks e.g., attacks
involving several services concurrently, requires the deployment of several types of IDSes as
well as the concurrent and uniform processing of all the alarms collected.

24.1 Fault-masking by means of redundancy and voting

When dealing with system components that are not reliable enough to meet a given system’s
specification, a standard approach is to introduce redundant components into the system. By
letting the redundant components vote on the result it is possible to increase the system’s
reliability. This has been explored extensively by the dependability community from which
MAFTIA is also profiting. However it seems impossible to apply this simple concept to
intrusion detection architectures not only because the failure i.e., false-alarm rate, of IDSes is
too high [Axelss99].

The problem with the false-alarm rate being too high, is illustrated in the work done by
Mathur et al. [MatAvi70], where they prove that one cannot increase a system’s reliability
simply by adding redundant components, if the failure rate of the single components exceeds
50%.

However, this is not the main reason why the work by Mathur et al. is not applicable to ID.
The main reasons why their results do not apply are the different assumptions about systems
and system components. In their work they consider systems that are generating a single
output for a single input. This does not apply to IDSes because for any given input they may
remain mute, generate one alarm, or generate a whole series of alarms. Moreover the semantic
of the output generated by the various IDSes varies depending on the type of IDS used, the
way the IDS is configured, and the environment within which the IDS is operated.

In addition simple voting mechanisms are not generally applicable. In the case where the
IDSes used are of different types, the semantics of the output generated is not uniform. The
semantics of alarms may differ across IDSes and at the same time not every IDS generates the
same set of alarms for a given attack.

2.4.2 Failure assumption coverage and correlation

As mentioned, it is our long-term goal to find practical solutions to the issues of designing
and operating large-scale intrusion detection architectures. A central part of our solution is
going to be based on the correlation of alarms, which shall enable us to interpret the semantics
of alarms and more specifically groups of alarms. To achieve that goal, we have to develop a
methodology that enables us to determine how the different types of IDSes have to be
distributed in a given environment. This methodology must be such that the required coverage
is guaranteed and moreover that the information provided by all those sensors contains
sufficient diversity and redundancy to enable the elimination of false positives by means of
correlation.

16

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Considering these requirements, one can intuitively identify the IDSes as being the key
elements that determine the way alarm correlation has to be done and the way the IDSes have
to be distributed over a given network. We need to obtain a clear understanding of the
characteristics of every IDS involved. When referring to IDS characteristics in this context,
we are interested in the strengths and weakness of an IDS, or more specifically, in the reaction
and the output generated by a given IDS when presented with a given input. Please note that
the intent (malicious or non-malicious) of the input generator has no influence on the reaction
of the IDS. The intent of an activity is not detectable, but needs to be interpreted in a larger
context—most likely also taking other observations into account.

This work represents the foundation of the long-term goal just described. In this work it is
shown how a set of assumptions for the evaluation of IDSes can be developed systematically.
It is our belief that these assumptions can then be used to analyze the assumption coverage of
a set of similar IDSes, as described by Powell [Powell95], in a more generic fashion.

243 Our approach to IDS evaluation

IDS characteristics can be determined by various means such as the evaluation of IDSes as
described in Section 2.3. However, as also explained in Section 2.3, existing evaluation
techniques are not well suited for the systematic IDS characterization required in the context
of this work [Jacks099, LFGHKMO00, LHFKD00, McHugh00, McHughOOb].

Therefore, we propose a different approach to IDS evaluation, which we believe to be
sufficiently systematic and generic for our purposes. The proposed approach is three-fold
[Alessa00]:

e We describe the capabilities of IDSes in a generic and extensible way.

o We systematically identify a representative input set that IDSes might be confronted
with i.e., activities that might be considered as a threat to the security policy..

e We describe every potential input by the set of IDS capabilities required to enable an
IDS to analyze and possibly recognize the considered input as an activity threatening
the security policy e.g. an attack.

Our approach allows us to predict how a specific IDS would potentially behave when
provided with a given input.

Example: Let us consider the attacks attempting to compromise a system by exploiting a
vulnerability present in earlier version of the test-cgi example script [CA0696, CA0797].
They can only be detected by an IDS which is capable of monitoring and recognizing http
requests. Furthermore, the IDS must be able to apply some kind of pattern matching
algorithm to analyze the stream of incoming http requests. This is a simplified example, but if
the IDS meets the corresponding requirements it is considered capable to generate the
corresponding alert.

The three main points of this work are addressed separately in a chapter each. Chapter 3 deals
with the issue of identifying a representative input set by applying a combination of the
concepts of fault-assumptions originating from the dependable system design and core
element of MAFTIA [D1Maf00, LaAvK092]. Chapter 4 addresses IDS descriptions similar to
a concept originally developed in Dobson’s work on system modeling [Dobson89].

Dobson’s concept is mainly based on the modeling of a system at several hierarchically
dependent abstraction levels and a model of the communication among the various
components. He is introducing a methodology that describes a system at five different levels
of abstraction. The two highest levels are the linguistic level and the conceptual level and
they describe a system in a non-formal but increasingly structured fashion. At the next lower
level, the semantic level, Dobson starts to describe the system formally. This formal
description is then refined in the logical level in order to explore the various viewpoints one
might have on the system. The lowest level is the descriptive level and deals with the

17

Malicious- and Accidental-Fault Tolerance for Internet Applications

technology used to implement the system. In addition Dobson develops the notion of frame
for communication systems by introducing four models for various aspects of the system
modeled. He introduces a model of system composition, a model of system behavior, a model
of messages, and a model of communication. Each of those models ignores details irrelevant
to its purpose.

As mentioned, we are identifying a representative input set based on a combination of the
concept of fault-assumptions [LaAvKo92] and Dobson’s approach to system modeling by
means of frame specific system models. Intuitively the approach assures that all factors and
combinations of factors that are influencing an IDS’ ability to detect a given attack are taken
into account. Such a high degree of coverage can be achieved by first modeling all the system
components and functions relevant to the process of ID. In a next step we then systematically
combine those models and apply them to a set of pre-defined scopes that we shall develop and
define within the same context. This leads to a concept that we shall call activity assumptions.
In this work the activity assumptions are validated and illustrated by means of an attack
classification.

The second main topic addressed in this work is the description of the capabilities IDSes offer
for the analysis of activities, including specific attacks. We describe these IDS capabilities by
developing a taxonomy that characterizes IDSes by defining various so-called analysis levels
and features that are inspired by Dobson’s abstraction levels. These taxonomy elements are
then superposed to the same set of pre-defined scopes used for the identification of a
representative input set. The reuse of the pre-defined scopes for the description of IDSes helps
us by assuring the consistency between the input set identification and the IDS description.

As mentioned, the activity assumptions and the IDS descriptions form the basis for the actual
evaluation of IDSes. In a future step we shall describe so-called activities that have been
identified by means of activity assumptions. Those activity descriptions shall be expressed by
the combination of the capabilities required from the IDS to analyze the given activity. The
analysis of such activity descriptions then enables us to determine whether an IDS is
potentially able to detect a given activity and whether the IDS can be expected to generate any
specific alarms.

2.4.4 Attack classifications

Most attack classifications that are based on taxonomies do not meet the criteria for
taxonomies as summarized in Section 2.2 (the same is true for many vulnerability
classifications). This has been observed and extensively criticized earlier by several authors
[Howard97, Krsul98, LinJon97]:

o Namely the categories used in attack classification are often not mutually exclusive.
This is often caused by a bad choice in the set of categories that form a category set.

e An attack may qualify for several-mutually exclusive—categories concurrently. In
many cases this is not caused by a bad choice of the categories rather by the fact that
attacks involve a sequence of steps are not atomic operations.

e An IDS can observe a given attack in many different ways depending on the
information source and detection techniques used.

The lack of attack classifications suitable for the evaluation of IDSes leads us to propose our
own, described in the next chapter.

18

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Chapter 3: Activity taxonomy

An important part of the evaluation of IDSes as introduced in 2.4.3 is the identification of a
representative input set. The input set must ensure that all the factors relevant for ID are taken
into account and exercised during the IDS evaluation process. We address this requirement by
developing an activity taxonomy. This taxonomy builds the foundation for what we call
activity assumptions. The concept of activity assumptions guarantees a systematic evaluation
of IDSes. In this chapter we develop these activity assumptions by means of an attack
classification i.e., the classification of malicious activities according to the activity taxonomy.

It is worth mentioning that the concept of activity assumptions is similar to the concept of the
so-called fault assumptions as introduced by Laprie et al. [LaAvKo092]. This concept was
briefly discussed in Section 2.4.2. A key element of this approach is that one identifies all the
factors that are believed to be potential causes of faults. In a next step one then considers the
impact those factors and the combination of those factors have in terms of faults.

Our proposal is similar in the sense that we identify all the factors believed to be relevant to
the detection process performed by an IDS. This means in this case, that we are identifying all
the factors relevant to the detection process of attacks. However, as mentioned in Section 2.4
attacks shall not be the sole input used to evaluate an IDS. As illustrated in Figure 7, we are
merely interested in the concept of activities that are similar to attacks in the sense that they
might cause an IDS to generate false alarms. We consider an activity to be an event or a
sequence of events that describes an action within a given context.

Examples: Within the context of http an activity represents an http request, within the context
of IP an activity represents an IP Protocol Data Unit (PDU); within the context of a process
many activities are conceivable. An example is the creation of a file.

— activities
]
activities similarn to
/activities threatening AN
or violating —T
%) N Qr\fv}f{ Q \
9 | securit ACHVIIES—
S |policy [I_thrgatenlrLg security \
> // policy (e;g- attacks)
= /
& /
o (/
S — -
N activities /
H+ violatino ceenrityvy
'q.; \ VIUIMI.IIIH JoeouUurt y '
) L P9| AN ER
\ (efg. mtrusions) _/
—
set #1 of categories

Figure 7 — Identification of activities relevant to the evaluation of IDSes

As illustrated by the grid shown in Figure 7, the goal is to identify an activity taxonomy that
allows the description of activities based on criteria relevant to the detection process
performed by IDSes. As further illustrated in Figure 7, the taxonomy covers not only
activities that are threatening the security policy, but also activities in the neighborhood.
These surrounding activities are relevant because they are similar to activities threatening or
even violating the security policy. The similarity of these activities to undesired activities is
manifested by the fact that they may cause IDSes to generate false positives. Please note that

19

Malicious- and Accidental-Fault Tolerance for Internet Applications

it is not possible to clearly identify those surrounding activities because, whether a given
activity is causing a false alarm to be generated, depends on the IDS evaluated. However, it
seems accurate to state that there is a high probability that the activities identified in the
neighborhood of activities threatening or violating the security policy, might cause IDSes to
generate false positives.

When identifying the taxonomy categories we have to keep the goals of the taxonomy in
mind. This means that the taxonomy categories should reflect activity characteristics relevant
to the analysis performed by IDSes. Furthermore the choice of the classification categories
has to be consistent with the goals of this taxonomy and should not be too broad, so that the
effort remains limited and well focused. In order to achieve this we have to consider IDSes on
the one hand and activities on the other. This taxonomy will enable us to classify activities
based on criteria that determine an IDS’ ability to detect a given activity i.e., properties of the
activity that are observable. This also means that we do not consider properties, such as the
intent of the adversary for example, which are not observable.

In order to achieve these goals we propose a model that takes the various observable aspects
of an activity into account. The model proposed is shown in Figure 6.

Activity Initiator
(e.g. Adversary)

)

-

dynamic activity
characteristics

\
: dynamic activi Interface ||
Affected ObJeCt -¢ y - ty - Obiect : Static activity characteristics:
characteristics JECLS |~ Affected object
Methods i © - Interface object(s)
- read . Dynamic activity characteristics:

. : — Communication (bi—/unidirectional) :
— modify © = Method invocation :
. — Activity attributes

— create j
- . Activity attributes:
delete . —input data is relevant
— execute " - repeated activity
. —internal source
State * - multiple sources

Figure 8 — System model used for activity taxonomy

Real-world activities tend to be quite complex and can be classified according to a large
number of criteria. The model shown in Figure 6 permits simplification in the classification of
activities down to a level at which one only deals with characteristics observable and relevant
to ID.

The model introduced here consists of three types of objects, however, only two of them are
relevant for the taxonomy. The activity initiator is in most cases an object that is not directly
observable. The most typical examples of an activity initiator are a remote system or human
being that may act with malicious intent, but does not have to.

We consider the activities initiated by the activity initiator to be potentially® observable at any
interface object involving the activity while interfering with the affected object. 1t is also

2 The observation of attacks at interface objects is not always possible. For instance, it is not possible to
detect attacks on the network if the data transferred is encrypted.

20

Towards a Taxonomy of Intrusion Detection Systems and Attacks

often possible for an IDS to observe the signs of an activity on the affected object itself. These
considerations lead to the introduction of the so-called static activity characteristics that are
comprised of one or more interface objects and the affected object. The activity initiator
object should be formally considered as being part of the static activity characteristics.
However, as mentioned the activity initiator object is generally not directly observable by an
IDS, which is why it is not included in the taxonomy to be developed in the following.

Another static element shown in Figure 6 that is not included in the static activity
characteristics, is the internal state of the affected object. The internal state is not taken into
account for the activity taxonomy because this work focuses on real-time IDSes or in other
words, IDSes performing continuous monitoring. These are generally transition-based IDSes
(see also Figure 6 and [DeDaWe00]). State-based IDSes generally perform a periodic analysis
of the system to monitor only. This means that the state of a system i.e., an object, is
inspected periodically for erroneous system states that indicate a fault. Typical examples are
security scanners such as Nessus [Nessus00], ISS [ISSSca99], Satan etc., and system integrity
checkers such as tripwire [Tripw99]. In fact, at the time of writing this document we are not
aware of a real-time IDS implementing a state-based detection paradigm.

So far the objects involved in an activity have been introduced and it has been mentioned that
they interfere. This interference can be described by so-called dynamic activity characteristics
that describe the way the objects interfere. We have identified two main sets of characteristics
that describe the dynamic portion of an activity. There is on the one hand the invocation of
methods on the affected object and on the other, the type of communication used. Besides
these two sets of categories, we have identified a set of additional attributes that refine the
dynamic activity characteristics and are observable by an IDS.

Please note that the term vulnerability was not mentioned here. The fault representing the
vulnerability can typically be found in either one of the interface objects, in the affected
object itself or in the combination of several objects. However, when analyzing an activity for
its visibility of an IDS, the location of the vulnerability is of limited importance only, which is
why it does not appear in the system model shown in Figure 6. Moreover, the initiation of an
activity threatening the security policy does not require a specific vulnerability to be present,
e.g. the activity may represent an unsuccessful attack. However, it is the presence of the
corresponding vulnerability that determines whether an activity may lead to security policy
violation, e.g. a successful attack or an intrusion.

Before further developing the mentioned notions of static and dynamic activity characteristics
we introduce the so-called activity scope. The activity scopes identified in the following
section will be the foundation for the identification of the interface objects and affected
objects to be developed in this chapter. However, the activity scopes are not only relevant to
this chapter. The hierarchical aspects of the activity scopes, in particular, shall become even
more important in the taxonomy of IDSes developed in the follow-up chapter.

3.1 Activity scope

IDSes are complex systems and so are their components. An IDS may be able to apply a
certain type of analysis to a given activity—but does that mean that the IDS is able to perform
the very same analysis on all the different activities it is exposed to? Definitely not. Some of
the activities may not even be visible to the IDS because the information source monitored
simply does not provide the required information. Furthermore, many analysis techniques
need to be adapted for every single object analyzed. For example an IDS that is able to
analyze a HTTP session in a stateful fashion is not necessarily able to perform a stateful
analysis for any other protocol session, such as SMTP sessions (mail). The IDS’ ability to
analyze an observation may even depend on more subtle differences such as the version of a
given protocol. A good example for this is HTTP where the version 1.0 of this popular
protocol does not support the processing of multiple request i.e., transactions over the same

21

Malicious- and Accidental-Fault Tolerance for Internet Applications

transport layer connection whereas version 1.1 of HTTP supports consecutive requests being
served over the same connection.

These examples demonstrate the need for a taxonomy that describes IDSes down to a very
low level of detail. Describing complex IDSes such as current network-based products at such
a low level can easily be identified as being a very tedious task. Also, when going a bit further
and considering the way we plan to describe activities—we foresee to describe them by the
combination of IDS properties required for the detection of a given activity—this does not
seem to be a practical solution. We would have to describe identical attacks multiple times—
once for every subtle difference among similar activity scopes. This would mean that we need
to create a separate activity description for every version of HTTP, for example.

We are addressing this need for high generality on one hand and high specificity on the other
by introducing activity scopes and the so-called activity scope tree. The notion of activity
scope defines the context within which IDS capabilities are available and to which a given
activity applies.

The activity scope tree defines the dependencies among activity scopes such that we can
clearly identify activity scopes as representing a subset of a higher level activity scope. The
activity scope tree enables us to describe IDSes in a compact and flexible manner. For
instance, this means that it allows us to express the fact that an IDS is able to perform string
matching on any application layer protocol which is fairly generic. At the same time we can
express the fact that the IDS is able to perform stateful analysis on HTTP version 1.1 only.

As we explain in the following sections we use the activity scope tree not only to classify
protocols and system components under the umbrella of some more generic activity scope, we
also introduce so-called functional activity scopes that are used to classify activity scopes
reflecting their inherent functional differences. For instance, transport layer protocols can be
distinguished into connection oriented and connection-less protocols. As we shall see, the
notion of functional activity scopes enables a detailed description and evaluation of IDSes
without the need of going down to the implementation level of highly specific activity scopes,
e.g. protocols.

3.1.1 Generic activity scopes

An activity scope tree consists of generic activity scopes that build the foundation for more
advanced things such as the mentioned functional activity scopes. Generic activity scopes
have the purpose to group more specific activity scopes based on common concepts taken
from the system design field.

The generic activity scopes described in the following were derived from common system
partitioning and layering concepts such as the OSI model. However, the number of generic
activity scopes was kept to a minimum by focusing on ID relevant issues.

Later we will describe the semantics of IDS characteristics with respect to those generic
activity scopes. Because the semantics of IDS characteristics have to be consistent within a
given generic activity scope, all the objects, protocols etc., covered by a generic activity scope
have to conserve those semantics. However, the semantic of IDS characteristics can be
defined with respect to any appropriate activity scope—provided the semantics of the given
IDS characteristic has not yet been defined on any higher level i.e., a more generic activity
scope.

22

Towards a Taxonomy of Intrusion Detection Systems and Attacks

4{ Link LLC ‘
4{ Network ‘ MAC ‘
4{ Middleware ‘
4{ Application

Device

1 L

Firmware

OS core

OS module

Call

Activity Scopes 4' Host

Filesystem
IPC
Middleware

User Environment

Process

Figure 9 — Activity scope tree with generic activity scopes only

As one can see in Figure 9, we have identified three generic activity scopes that represent the
first level of the tree: the user, the host, and the network.

The networking activity scope is further divided into generic activity sub-scopes that roughly
correspond to the ISO network stack. We choose not to take the presentation and session
layers into account because IDSes generally treat them within the context of the application
layer.

The second level activity scopes, identified for the host activity scope, consist of activity
scopes that are of interest for IDSes. However, it is less straightforward to identify the activity
scopes on the host level because a layering concept as it exists for the network stack does not
exist here. We therefore focused on objects that are of interest to IDSes and that are
observable.

The middleware activity scope is split into a portion that can be used to describe an IDS’
characteristics with respect to activities observable on the network and a second portion that
covers middleware functionality used on the host only.

3.1.2 Specific activity scopes

The generic activity scope tree just developed can be extended with more specific activity
scopes that, generally speaking, represent implementations of a generic activity scope.
Examples of such implementations are protocols or the various types of filesystem objects.
However, our goal is to describe IDSes and later activities using generic activity scopes
wherever possible.

23

Malicious- and Accidental-Fault Tolerance for Internet Applications

Physical

Link LLC ’7 IEEE 802.2
MAC IEEE 802.3
IPv4 i CPU
IPV6 Device Storage

X25 110
Memory

1

ARP

Firmware
e

ICMP

OS core
: CORBA
Middleware DCOM

i}

[T

4' Networking DNS 0S module Network stack
Application SMTP
FTP
System
TTP Call H
1 HTTP 1.0 Function

HTTP 1.1
File
Directory
Link
Special

PC Signal
- Socket
Activity Scopes Host EIFO

Shared Memory

Filesystem

Message
Semaphore

; CORBA
Middleware DCOM
Variable

Environment Registry

User Process

i

Figure 10 — Activity scope tree including specific activity scopes

The tree shown in Figure 10 can be extended if needed. For instance, further protocols may be
added as needed.

3.1.2.1 Networking related activity scopes

As a first step we are considering the networking activity scopes used to describe networking
related IDS characteristics. For further details we recommend Tanenbaum [Tanenb96]. Please
note that the protocols listed below are merely examples illustrating the conceptual foundation
of the activity scope tree.

Physical layer The physical layer of communication systems is not of importance
for today’s IDSes. However, as technology evolves, this aspect may
become relevant some day.

Table 1 — Networking related activity scopes—physical layer

Link layer The link layer is split into the less known LLC layer (logical link
control) and the MAC layer (medium access control).

LLC The logical link control layer used on today’s mostly Ethernet based
networks is basically empty. In theory the LLC may offer the service
of reliable communication which is hardly used. The LLC has been
defined in IEEE 802.2. See also Tanenbaum [Tanenb96].

24

Towards a Taxonomy of Intrusion Detection Systems and Attacks

MAC The medium access control layer provides the addressing of entities
on the LAN and defines the way the medium is accessed e.g.
Ethernet, which originally used a shared medium. This requires a
special method to send data on the media such that possible
collisions do not lead to the loss of data. The MAC has been defined
in the IEEE 802.3 standard. See also Tanenbaum [Tanenb96].

Table 2 — Networking related activity scopes—link layer

Network layer The network layer generally provides a routable addressing of
entities and may also offer the service of reliable communication i.e.,
a connection based service. However the most commonly used
implementation of the network layer used today is IPv4 (internet
protocol version 4) which offers a datagram service only.

1Pv4 The internet protocol version 4 offers a routable datagram service
that does not guarantee the delivery of a datagram nor the order of
arrival of datagrams.

1Pv6 The new not yet widely deployed version of the internet protocol
provides a much wider address space and offers improved support
for the encryption of data, quality of service, mobility, dynamic
routing etc.

X25 The X235 is a connection oriented network layer service that was used
by telecom operators to data services before the internet became as
popular as it is today.

ARP The address resolution protocol ARP resides at the lower network
level and provides the service of mapping MAC sub-layer addresses
to network layer addresses.

Table 3 — Networking related activity scopes—network layer

Transport layer The transport layer is the layer where in today’s networks reliable
communication is implemented. However, connectionless transport
layer services also play an important role in today’s networks. The
transport layer is generally used to address a specific service on a
given host.

TCP The transmission control protocol is the most commonly used
connection oriented protocol used. The handling of TCP streams is
an important but non-trivial issue for network-based IDSes.

UDP The user datagram protocol is similar to TCP but does not provide
bi-directional connection based service. As this protocol is not
connection based it is far easier for IDSes to analyze.

ICMP The internet control message protocol is also a connectionless
protocol that was conceived to control the routing at the network
layer and to offer simple service such as ping. However, the
functionality offered by ICMP may be misused in various ways,
which makes it an important protocol to be monitored by IDSes.

Table 4 — Networking related activity scopes—transport layer

25

Malicious- and Accidental-Fault Tolerance for Internet Applications

Middleware The monitoring of middleware protocols is—if actually done at all—
mostly implemented at the application layer level. However, we list it
here for future developments.

CORBA CORBA is a middleware standard defined by the OMG (object
management group) and is widely used in distributed systems.
DCOM DCOM is Microsoft’s answer to CORBA. DCOM includes

technology such as Microsoft’s Active-X controls etc.

Table 5 — Networking related activity scopes-middleware

Application layer =~ The monitoring of application layer protocols is a tedious task for
IDSes because there are so many of them. In addition several
versions have been defined over the years for many of them e.g.,
HTTP v0.9, HTTP v1.0, HTTP v1.1, POP v1, POP v2, POP v3 etc.

DNS The domain name service is the most commonly used name
resolution service. This protocol is mostly connectionless.

SMTP The simple mail transfer protocol is the most commonly used
protocol to transfer e-mail over the internet.

FTP The file transfer protocol is used to transfer files over the internet.
This protocol uses separate control and data connections which
makes it a challenge for IDSes to analyze FTP traffic.

HTTP The hypertext transfer protocol is the protocol used by the world
wide web (WWW). Several versions of this protocol have been
defined and are still in use.

Table 6 — Networking related activity scopes—application layer

3.1.2.2 Host related activity scopes

As already mentioned, it is not so straightforward to identify the activity sub-scopes for the
host activity scope. The following activity scopes have been defined by identifying system
components as they can be found in computing systems. The list focuses on security relevant
activity scopes by refining areas of special interest to IDSes.

Devices Devices are hardly covered by today’s IDSes. However, one might
foresee ID work to be done in this area in the future. This area
currently does not seem very promising but this may change as new
paradigms evolve.

CPU The central processing unit is the target of some attacks that attempt
to exploit faults present in the CPU’s microcode.

Storage Storage devices such as disks, tapes, CD-ROMs etc., are used for
persistent storage of large volumes of data.

1/0 Input / output devices allow a system to communicate with the
outside world. Examples: Network interface cards, serial/parallel
line interfaces, keyboards, mouse etc.

Memory The memory (RAM) is commonly used to store data and executable
code.

Table 7 — Host related activity scopes—devices

26

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Firmware

The firmware is a low-level piece of code that runs beneath the
operating system and that is responsible for managing the hardware
of a system. It manages all the devices in a system e.g., power
management and bootstrap, the operating system at power-up time.
The firmware is not of importance to today’s IDSes, but with the
ongoing development of technology [VMware(00] that enables the
operation of several independent virtual machines on the same
physical system this may change.

Table 8 — Host related activity scopes—firmware

OS core

The operating system is used to control and to manage the system.
Further it provides various services.

Table 9 — Host related activity scopes—OS core

OS modules

Operating system modules are commonly used to extend the OS core
with device drivers etc. Because the network stack is an OS module
of high importance for ID we list it separately.

Network stack

The network protocol stack is commonly implemented as an OS
module for efficiency reasons. The reason why it is listed here
separately is that it is a very prominent target. If the network stack
encounters a failure this often propagates to OS core and may
therefore lead the whole system to failure. Also it is relatively easy to
attack the network stack because it represents—by definition—one of
the most important interfaces of the system to the outside world.

Table 10 — Host related activity scopes—OS modules

Calls

Calls represent an important change in the execution path of a
process. One can distinguish calls that do not require a context switch
from user space to kernel space and calls i.e., system calls that do
require such a switch.

System calls

Function calls

System calls are used by a process to interfere with the underlying
OS. The sequence of system calls made by a process may be used by
an IDS, such as deamon-watcher by Wespi et al. [WeDaDe0O,
WesDeb99], to obtain an indication on what a process is actually
doing.

The tracing of function calls is generally not easy because they occur
in the user space and do not require an interaction with a central
component such as the OS kernel. However, it is conceivable that
calls to library functions are logged by the library involved and then
used for later analysis by an IDS. An example of such an approach is
the work by Kerschbaum, Spafford and Zamboni [KeSpZa00,
SpaZam00, SpaZamOO0b].

Table 11 — Host related activity scopes—calls

27

Malicious- and Accidental-Fault Tolerance for Internet Applications

Filesystem objects

The filesystem is a very important component of commonly used
computing systems. It is used to store security relevant data such as
configuration files, passwords etc. The filesystem may also be used
as a general address space. In Unix filesystems, for instance, one can
find, besides ordinary files, directories and links, the notion of special
files such as named pipes, and sockets or device files.

Table 12 — Host related activity scopes—filesystem objects

IPC

Inter-process communication is a widely used method to interfere
with running processes. It therefore represents a potential interface
for an adversary to manipulate the behavior of a running process.

Signal

Socket

FIFO

Shared memory

Messages

Semaphore

Signals are a very basic technique to inform processes about a given
event. Signals may also force a process to terminate.

Sockets enable local clients to communicate with a local server
process.

FIFO stands for first in—first out. FIFOs are pipes that can be used
to feed the output generated by one process to an input stream of
another process.

Shared memory enables two processes to exchange data very
efficiently directly over the memory.

Messages provide a mechanism that enables processes to exchange
data in a well-structured way.

Semaphore are used for synchronization purposes e.g., to prevent the
concurrent access to a resource.

Table 13 — Host related activity scopes—I1PC

Middleware

As mentioned, certain components of commonly used middleware
technology can only be monitored on the host level. This is the
reason for the repeated listing here.

Table 14 — Host related activity scopes—middleware

Environment

The behavior of a process may be influenced by its environment, this
makes the environment an important attack interface for adversaries.

Variable

Registry

Environment variables are copied at process creation time from the
parent process to the newly created child process.

The registry is specific to the family of the Windows operating
systems. The registry represents a central repository of configuration
information of the whole system. The modification of the registry can,
sometimes, influence processes already running.

Table 15 — Host related activity scopes—environment

28

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Process a process is the running instance of a program. Any application, tool,
service etc., that is run on a system is generally reflected by one or
several processes. This makes process the prime target and interface
for attacks. Typical server processes are httpd (world wide web) and
sendmail (mail service). Typical applications are web browsers or
text processors.

Table 16 — Host related activity scopes—process

The final, first level activity scope to discuss is the user activity scope. We have not divided
the user activity scope into lower level activity sub-scopes because there are no user
components that would seem to be of special interest to an IDS. Nevertheless the user activity
scope is needed as it may be used to describe an IDS’ ability to relate observations to a user or
possibly a group of users.

3.1.3 Functional activity scopes

So far we have developed an activity scope tree that enables us to classify objects and
protocols according to their logical location in a system. We have pursued a pragmatic
approach—focusing on items relevant to ID. This being said we have to admit that we have not
yet been able to develop the activity scopes to the point required for compact and generic
evaluation of IDSes—the goal being to remain above the implementation level when
describing IDSes.

In particular protocols that have been assigned to a generic activity scope may vary
significantly in the way they operate and the functionality they provide. Such functional
differences have significant consequences for the IDSes that are analyzing protocols. For
example, the analysis of a connection oriented protocol requires the IDS to perform far more
sophisticated operations such as keeping the state of a protocol session, compared to the
analysis of a connectionless i.e., datagram based, protocol. The two protocols may represent
activity (sub)-scopes of the same generic activity scope e.g., both TCP and UDP are transport
layer protocols. Because of the significant differences in the way they operate it is not
possible to describe an IDS at the generic activity scope with respect to these protocols.

In order to address this obvious concurrent lack of generality and specificity we are
introducing so-called functional activity scopes to refine the existing classification. The goal
of these functional activity scopes is the detailed description and evaluation of IDSes at the
level above the implementation of protocols etc., thereby still providing sufficiently detailed
descriptions to make the evaluation viable.

29

Malicious- and Accidental-Fault Tolerance for Internet Applications

Activity Scopes

Activity Scopes

Transport layer

Connectionless | Connection
oriented

| Transport Layer | Fre .

Fragmentation

a) b)

Figure 11 — Example of functional activity scopes

Figure 11 shows two views of an example illustrating functional activity scopes. Both views
include the generic activity scopes networking and transport layer. Further both views show
the transport layer activity (sub-)scopes ICMP, UDP, and TCP. Latter activity scopes are
grouped into groups i.e., functional activity scopes, reflecting common functional properties.
The example shown in Figure 11 introduces functional activity scopes that groups activity
scopes according to whether an activity scope,

e is connectionless,
e is connection oriented,
e provides fragmentation® and/or

e provides addressing on the transport layer.

The resulting graph, shown in Figure 11a, is no longer a tree. In order to keep the graph
directed and non-cyclic we have introduced directed arcs that by definition point from higher-
level activity scopes to lower-level activity scopes. These arcs will have to be taken into
account by the algorithms used for the evaluation of IDSes.

3 We are not aware of a transport layer protocol that supports fragmentation. This functional activity
scope is mentioned for illustration and for the sake of completeness.

30

Towards a Taxonomy of Intrusion Detection Systems and Attacks

/Amvny‘SmK

£
(e}

Generic Activity Scopes

Lin| yer Network |ayer
LLC //

v \

[
4//NM OK - \

Tra7o\l Ii App. Ii\ EnYUVKem /\ Filesystem

L -

/Connecl nle: \

onless
\ \\Donne tion

ual
Q

Functional
Activity Scopes

Frag. /Connecuonlesg‘ Conne llonless /Mum conn\ Multj trans. {Process Running i Dyn

I

SARN

|EEE 802.3 IPv4 IPv6 ARP X25

Specific
Activity Scopes

M TSI /// | 7 Tm I

WA LRy

TCP ICMP UDP: DNS SMTP FTP HTTP 1.0 HTTP 1.1 :Variable Registry: Semaphor FIFO Shared Mem.: Directory Device Pipe

Figure 12 — Activity scope graph including functional activity scopes

Figure 12 shows the activity scope graph that includes the functional activity scopes defined
in the following. Please note, this graph does not show the arcs pointing from the generic
activity scopes to the specific activity scopes for readability reasons. Instead we indicated
these associations with vertically arranged dotted lines. In addition the graph does not show
all the specific activity scopes mentioned as examples in the following.

As mentioned, we now introduce and describe functional activity scopes by first mentioning
their higher level activity scope. The names of the functional scopes are highlighted in italic
font. We also provide examples wherever possible. Please note that we are again focusing on
issues relevant to ID only.

3.1.3.1 Networking related functional activity scopes

As before we start by discussing the networking scopes first:

MAC

Medium access control layer, see Table 2.

Fragmentation

Fragmentation at the MAC layer is generally not done in standard
LAN environments. However, in other applications such as satellite
communication MAC layer PDUs may be fragmented.

Table 17 — Networking related functional activity scopes—MAC layer

Network layer

See Table 3.

Fragmentation

Connection
oriented

Network layer protocols such as IP may offer the possibility to split
PDUs into smaller pieces. This splitting is required whenever the
underlying service has a MTU (maximum transmission unit) size that
is smaller than the size of the network layer PDU to be transmitted.
In order not to miss important data, network-based IDSes should
recompose these fragments before they analyze the data. This is not
so complicated, but it is costly in terms of CPU and memory
required. Certain IDSes do not reassemble fragments for exactly
those reasons. An adversary can fool those [DSes simply by
fragmenting the data sent to the target. Examples: IPv4, IPv6 (see
also [Thomas96]).

Connection oriented network layer protocols are mainly used in the
telecom world (circuit-switching etc.). Examples: X.25, Frame Relay,
ATM, DODB.

31

Malicious- and Accidental-Fault Tolerance for Internet Applications

Connectionless

Network layer protocols used in LAN environments are generally not
connection oriented. Examples: Ipv4, IPv6.

Table 18 — Networking related functional activity scopes—network layer

Transport layer

See also the example shown in Figure 11 and Table 4.

Address

Connection
oriented

Connectionless

Fragmentation

Many transport layer protocols such as TCP or UDP provide the
ability to address a service access point on the destination and
source entity. In the case of TCP and UDP addressing is done by
means of so-called port numbers. Examples: UDP, TCP.

The analysis of connection oriented protocols imposes additional
costs on the IDS that is monitoring the connection for suspicious
traffic. Connection oriented protocols may be tricked into splitting
the data stream into arbitrary sequences. Such data-chopping can be
used by an adversary to prevent the detection of their attacks by
IDSes that are not sufficiently able to reconstruct data streams of
connections. In general the IDS needs to keep track of the
connection’s state, data retransmissions etc. Example: TCP.

Connectionless protocols have the advantage that they do not impose
the overhead of establishing a connection. This also reduces the
burden for IDSes when monitoring such traffic. However, PDUs of
connectionless protocols can be easily spoofed. Examples: UDP,
ICMP.

We are not aware of a connectionless transport layer protocol that
would support fragmentation of data. However, as it is conceivable
to be implemented, we mention it for the sake of completeness.

Table 19 — Networking related functional activity scopes — transport layer

Application layer

See Table 6.

Connectionless

Single connection

Multi connection

Application layer protocols may be defined on top of a connection
oriented or a connectionless service. As mentioned connectionless
services may be subject to spoofing attacks. That attack naturally
propagates to the overlaying application layer protocols. Examples:
Domain (DNS), TFTP (trivial file transfer protocol), NTP (network
time protocol), SNMP (simple network management protocol).

Most application layer protocols that are based on a connection
oriented service require one single connection only. This means that
an IDS has to monitor only one transport layer connection in order
to analyze the application layer session. Examples: HTTP, SMTP
(simple mail transfer protocol), Telnet, SSH (secure shell).

Very few application layer protocols require several transport layer
connections for their operation. However, the few that do are quite
complex to analyze for IDS because it needs to keep track of all the
transport layer connections and in addition it needs to correlate the
observations made across the various connections. Example: FTP
(file transfer protocol).

32

Multi transaction

Single transaction

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Particularly in the database area e.g., Oracle, DB2, MySQL etc., a
clearly defined transaction concept exists. However, most application
layer protocols do not have a clearly defined notion of transactions.
For the purpose of this work we are relaxing the definition of
transactions. We relax the definition to the extent that we consider an
application layer protocol to support multiple transactions within a
session if a protocol sequence can be repeated e.g. multiple mail
messages can be sent within the same session, multiple documents
can be transferred within one session etc. Examples: SMTP, HTTP
version 1.1, FTP.

Application protocols that do not support multiple transactions
within a session are generally simpler to analyze for an IDS because
it need keep limited protocol state information only. Examples:
HTTP version 0.9 and 1.0.

Table 20 — Networking related functional activity scopes—application layer

3.1.3.2 Host related functional activity scopes

Within the host scopes we have been able to identify far less functional activity scopes than
for the networking activity scopes:

Environment

See Table 15.

Process creation

Running process

Environment elements belonging to this functional scope influence a
process at the time the process is created. Examples: Unix and
Windows environment variables, Windows registry.

Environment elements may influence processes already running.
Example: Windows Registry.

Table 21 — Host related functional activity scopes—environment

IPC Inter-process communication, see Table 13.

Synchronization The IPC object can be used for synchronization purposes. Examples:
semaphore, signals, messages.

Interrupts The IPC object causes interrupts of the normal program execution.

Data exchange

Examples: FIFO, Signals, Sockets.

The IPC object is used to exchange data. Examples: FIFOs, sockets,
shared memory, messages.

Table 22 — Host related functional activity scopes—IPC

Filesystem object

See Table 12.

Static

Dynamic

The filesystem object is static. Examples: files, links, directories.

Filesystem objects are considered to be dynamic if they are used for
communication purposes such as IPC or the interaction with devices.
Examples: named pipes, sockets, device files.

Table 23 — Host related functional activity scopes—filesystem object

33

Malicious- and Accidental-Fault Tolerance for Internet Applications

For the user activity scope we have not been able to identify functional activity sub-scopes
relevant to ID.

3.2 Static activity characteristics

Now that we have introduced the notion of activity scope and have thereby identified all the
activity scopes known to be relevant to ID we can now go back to the discussion of the
activity taxonomy i.e., develop the static activity characteristics.

As mentioned, for the detection process performed by an IDS the location of the vulnerability
enabling an intrusion is of limited importance only. However, the vulnerability has a
significant influence on the set of interface objects and the affected object required for the
description of the corresponding attack. In fact the vulnerability implicitly defines the avenues
for possible attacks. Loosely speaking such an avenue can be considered as the set of interface
objects and the affected object describing the static characteristics of the corresponding attack
or more generally the activity. Furthermore the vulnerability implicitly defines the data
sources i.e., once again the interface objects and affected objects an IDS has to monitor to
detect a given attack.

physical layer
Interface Object — medium access control
Static Activity L Ir?e%l,?/glnu?gyce?mml
Characteristics storage device [~ connectionless transport layer
Affected Object 1/0 device [connection oriented transport layer
CPU — app. layer - connectionless
memory — app. layer - single conn. - single trans.
firmware [— app. layer - single conn. — multiple trans.
operating system core — app. layer — multiple conn. - single trans.
operating system module [— app. layer — multiple conn. — multiple trans.
i network stack — Middleware
Activity Taxonomy filesystem object [I/O device
process — system call
— function call
i ati uni-directional [environment
bi-directional — filesystem object
[process
: : — signal
. - object creation -

Dynamic Activity Method Invocation object deletion L socket

Characteristics object read FIFO
object modification L rsr?easr:g rgsemory
object execution g

— semaphore

input relevance
Attributes insider origin
repeated activity

multiple origins
Figure 13 — Overview of activity taxonomy

In the following we discuss the activity taxonomy as shown in Figure 13—starting with the
static activity characteristics. The taxonomy elements are developed based on the aim of the
attacks described.

3.2.1 Affected object

It is the goal of a given attack to intrude a target object. More formally speaking, the goal is to
change the state of the target object to a failure state that represents a security policy
violation. However, as discussed in Section 2.1, a security policy violation does not
necessarily involve malice. For this reason we introduce the term, affected object instead of
using a term such as attacked object or target object, which implies malicious intent. It is also
worth recalling the fact that the fault i.e., the vulnerability, that enables a successful attack is
not necessarily located in the affected object.

In the following we list the affected objects chosen from the activity scopes for the
development of the activity taxonomy. They have been identified by isolating all the physical
and logical ID relevant components in a networked computing system. Naturally we focus on
components and finer grained sub-components known to be critical to security and ID in
particular. We have done so by selecting activity scopes at different levels in the activity
scope graph discussed in Section 3.1 and shown in Figure 10. Please note that many of the
scopes listed in the following are listed for reasons of completeness. They are listed because it

34

Towards a Taxonomy of Intrusion Detection Systems and Attacks

is conceivable that they may play the role of an affected object, although we are currently not
aware of an attack targeting them, and because the scope graph imposes their listing

e Storage device

e J/O device

e CPU

e Memory

e Firmware

e Operating system core

e Operating system module—Excluding the networks stack OS module.

o Network stack—the network stack is commonly implemented as an OS module. We
list it separately here because it is a prominent attack target.

e Filesystem object

e Process

3.2.2 Interface object

Whenever an attack is executed it targets what we call the affected object. In order to interact
with this object the adversary has to involve one or several interface objects, or in other terms
attack interfaces. This can naturally be extended to the more general case where no malice is
involved. In this case we simply describe the interface objects that an activity involves.
However, we are only interested in those interface objects that could, when monitored, enable
an IDS to recognize evidence of a given attack. This allows us to limit the choice of interface
objects to the proximity of the attacked object. In other words, it makes no sense to consider
the adversary’s keyboard as a potential information source for the detection of a webserver
attack, because the adversary’s keyboard is not relevant to the detection of evidence of the
attack.

Most of the affected objects listed above may also be used as an interface object. However,
there is an important list of communication objects that was not listed among the affected
objects that can figure as an interface for an attack. The categories of protocols listed below
refer to depictions of said protocols. In addition the list of interface objects was developed
based on the notion of activity scopes introduced in Section 3.1. A slight difference in the
affected objects identified earlier is that the functional activity scopes (see Section 3.1.3) are
used to refine the model. All this results in the following list of interface objects:

e Physical layer

e Medium access control
e Logical link control

e Network layer

In the case of the transport layer we distinguish between the connection oriented transport
layer and the connectionless datagram service as it may be a differentiator for an IDS’ ability
to detect an ongoing attack.

e Connectionless transport layer

e Connection oriented transport layer

In the case of application layer protocols we differentiate even more. We do so not only by
distinguishing among protocols based on connectionless and connection oriented services but
also by considering the number of transactions that can be executed within the context of a
single session. We further distinguish protocols that use more than one lower level service
concurrently. We distinguish these different ways of operation because they may be a
differentiator for IDSes.

35

Malicious- and Accidental-Fault Tolerance for Internet Applications

Application layer based on a connectionless service

Application layer based on a single connection, single transactions. Typical examples
are HTTP version 1.0 or the remote shell.

Application layer based on a single connection, multiple transactions. A typical
example is HTTP version 1.1 that supports persistent connections. We have observed
IDS not being able to recognize HTTP attacks when the first request of a persistent
connection was non-malicious. Another example is the mail transfer protocol SMTP,
here the situation is similar i.e., we have found IDSes that were unable to recognize
attacks when the first mail message transferred was non-malicious.

Application layer based on multiple connections, single transaction. We ignore this
category in the following because we are not aware of a protocol that qualifies for this
category.

Application layer based on multiple connections, multiple transactions. A typical
example is the file transfer protocol FTP. The analysis of such protocols is a non-
trivial task for IDSes.

We now continue with activity scopes that are primarily host oriented. The middlware scope
is both a network oriented and a host oriented activity scope. We do not distinguishing
between the host and the network portion of middleware here, because in general one cannot
distinguish between host-based and network-based use of middleware".

Middleware
1/0O device

Operating system module: Some operating systems such as Linux provide an
interface that allows additional modules to be loaded dynamically. Such modules may
represent an attack interface to the running kernel.

System call
Function call
Environment

Filesystem object: Filesystem objects typically serve as an indirect interface to
processes and to the OS.

Process: A process may be used as an interface to variety of other objects such as the
filesystem.

Inter-process communication allows processes to communicate among each other. A series of
different mechanisms has been developed over time:

Signal

Socket

FIFO

Shared memory
Messages

Semaphore

* For the description of an activity involving middleware it is not relevant to distinguish between the
portion observable on the network and the portion observable on the host because one can assume that
both are present. However, as we will see in the next chapter, it makes sense to distinguish the
middleware related characteristics of an IDS—separating the network and the host portion because this
may have an influence on the degree to which an IDS is able to analyze such an activity.

36

Towards a Taxonomy of Intrusion Detection Systems and Attacks

3.3 Dynamic activity characteristics

The dynamic activity characteristics of this taxonomy focus on observable attack relevant
characteristics. These characteristics will, to a large extent, enable us to evaluate the attack
recognition and identification capabilities of IDSes. Please note that because we are focusing
on real-time and transition based IDSes, we do not model the impact of attacks. In other
words we focus on observable evidence of attacks and not on the (possibly) resulting internal
state change of the affected object.

In the model shown in Figure 5 we already identified three sets of dynamic activity
characteristics that describe the interaction among objects. We distinguish the set of
characteristics describing the inter-object communication, the method invocation, and some
additional activity attributes.

Separating the inter-object communication and the method invocation characteristics,
supports capturing the differences between attacks staged over the network and attacks staged
locally. However, this does not mean that network related activities are only described by
communication characteristics. In fact, in most cases activities have to be described by a
mixture of network related and host related characteristics.

3.3.1 Communication

The communication characteristics we have identified are rather simple. This simple solution
was possible because of the interface objects introduced earlier. These interface objects
already capture a significant portion of communication protocol specific characteristics. In
accordance with the separation of static and dynamic activity characteristics, this leaves us
with the following two communication related, observable activity characteristics:

e Uni-directional: The communication flows in one direction only.

e Bi-directional: The communication flows between two peers e.g., TCP connection but
also UDP services such as DNS”.

Please note that an attack involving a bi-directional protocol such as TCP does not necessarily
need to be bi-directional. In fact typical denial-of-service (DoS) attacks against a host’s
network stack, such as teardrop or land [CA2897], are often uni-directional only and consists
of some malformed PDUs sent to the targeted host. In most cases the target host does not
reply because the protocol used does not require him to do so or because the target has
already become unresponsive e.g., crashed.

3.3.2 Method invocation

The second set of dynamic activity characteristics is the set of methods invoked within the
context of the affected object (see also Figure 5). The identification of these methods is
relatively straight-forward:

e Object creation: A new object is created. This generally occurs within the context of
an existing object such as the filesystem within which a new file can be created.
e Object deletion: An object is deleted e.g., deletion of a file.

e Object read: The internal state or part of an object’s internal state is read e.g., the
memory of a process or the content of a file.

e Object modification: The internal state of an object is modified e.g., the content of the
password file is modified.

> DNS stands for Domain Name Service—it is the directory service used on the Internet to translate host
names to [P addresses.

37

Malicious- and Accidental-Fault Tolerance for Internet Applications

e Object execution: The behavior of an object is changed such that it threatens the
security policy e.g., the execution path of process is modified. The most typical
examples are probably buffer-overflow attacks [CA1395] and attacks involving
special character [CA0696, CA0797].

It is clear that the affected object, within whose context a given method is invoked, defines
the semantics of these methods. Finally, please note that attacks usually involve the
invocation of several methods concurrently.

333 Activity attributes

After having defined the dynamic activity characteristics describing the communication and
the method invocation aspects, we have to admit that there are still ID relevant aspects of
activities that have not yet been described. For instance it is not possible to distinguish
between attacks where a given method is executed only once and attacks where the same
method is executed repeatedly.

Example: The creation of a file cannot be distinguished from the exploitation of a race
condition.

In order to address these types of issues we have identified additional activity attributes that
allow us to refine the description of attacks i.e. activities:

e Input data relevance: The input provided to an object is relevant to the attack. This
characteristic can be used to refine the description of buffer-overflow attacks etc. It
thereby addresses the fact that an IDS needs to be able to perform additional analysis
on the data in order to recognize attacks where input data is relevant.

e Repeated activity: Certain types of activities can only be clearly classified as being
malicious when they are observed repeatedly. Typical examples are scanning
activities or the exploitation of race conditions.

o Internal origin: Some malicious activity may originate from inside the system to be
protected. Typical examples are the hidden communication channels e.g.
communication hidden in DNS traffic sent to the outside. Other examples include
Trojan horses or the presence of an adversary among the employees of an
organization.

e Multiple origins: In some cases attacks appear to have multiple sources. The
recognition of this fact may be crucial to clearly identify a given attack. Examples are
attacks such as Smurf [CA0198] or distributed denial-of-service attacks such as
Trinoo [CIN0799]. Those attacks end up sending a large amount of PDUs with
arbitrarily forged sender addresses towards a target.

Please note that we do not describe the dynamic activity characteristics of an activity by
activity attributes only. The activity attributes are only observable when combined with either
communication or method invocation characteristics. In other words, they are just a property
of the activity in question.

34 Attack Classification

Now that the activity taxonomy has been defined we could start developing activity
assumptions by exercising all the possible combinations of activity characteristics. Although
this would result in a large number of activities that could then be used for the evaluation of
IDSes, this approach is unpractical mainly because of the sheer number of activities to be
determined.

Instead we are pursuing another approach where we identify the activity classes that are of
interest to ID, and thereby to the evaluation of IDSes as well, by classifying real-world

38

Towards a Taxonomy of Intrusion Detection Systems and Attacks

attacks. An activity class is naturally defined by a given combination of dynamic and static
activity characteristics. As implied, these ID-relevant activity classes are identified by
describing real-world attacks using the activity taxonomy developed in this chapter.

Given that the data used for the attack classification is representative, it also allows us to
validate the activity taxonomy developed here. This can be done by verifying that there is not
a small number of activity classes accommodating the vast majority of all attacks classified.

As indicated, such an attack classification needs to be based on a representative set of attacks.
We have met this requirement by classifying attacks taken out of IBM’s vulnerability
database VulDa. VulDa is described in more detail in Appendix B:. In the time available we
have classified® 358 out of more than 800 attacks that are explicitly documented in VulDa and
that have been collected over a period of 4 years. The attacks were chosen at random.

Example 1: Before we take a closer look at the statistics of the resulting classification we
consider an attack example to illustrate the way attacks were classified. A good example can
be based on the test-cgi vulnerability [CA0797] reported in 1997. This test script enables an
adversary to read protected files from the webserver. So, the affected object is a filesystem
object that is accessed by a process which itself is influenced by an application protocol
request to the webserver. Last but not least some special characters were used in the URL
requested from the webserver. All in all this leads us to the following classification:

o Affected object: Filesystem object

o Interface objects: Process, application layer (connection based, single or multi
transaction)

e Dynamic activity characteristics: Bi-directional communication, object read, input is
relevant.

Example 2: One can also execute the exercise in the opposite direction. We could for
example ask the question whether an attack exists that is targeting a process using local, e.g.
signals, and network, e.g. TCP, communication means concurrently. In fact, just recently, a
theoretic attack against some FTP daemons has been discovered [Zalews01] where a remote
attacker is able to inject executable data over the network that can then be activated by
sending TCP out-of-band traffic. The TCP out-of-band traffic causes a signal to be sent to the
process which then starts processing a signal handler. Unfortunately this signal handler
contains calls to non-reentrant system calls which may lead to the execution of arbitrary
command. Please note that this attack has not yet been successfully run against a FTP
daemon, but it has been proven that the attack is theoretically possible—even though it is
considered to be rather difficult.

e Affected object:Process
o [Interface objects: Transport layer (connection oriented), signal, system call

e Dynamic activity characteristics: bi-directional communication, object execution,
input is relevant, repeated activity.

As mentioned, we have classified 358 attacks along the lines of the two examples described
above. Due to the descriptive nature of the activity taxonomy, which permits a relatively fine-
grained description of activities, or in this case attacks, it is no surprise that 184 classes were
used to classify the 358 attacks. Based on this material we were able to produce significant
statistical results that are discussed in Chapter 5: . These results will support us when
choosing representative activities to evaluate IDSes.

® Please note that the taxonomy developed here has been integrated into the database maintenance
process. This means that the classification of attacks has become an ongoing effort continuously
resulting in a more and more representative classification.

39

Malicious- and Accidental-Fault Tolerance for Internet Applications

After all, such a classification can be used to validate the viability of a taxonomy. For
instance, if a large number of attacks should fall into the same class, this would be a sign for a
taxonomy that is too coarse. On the other hand if almost every attack should form its own
class, this would be a sign for the fact that the taxonomy is likely to be too fine-grained.

11 [3.1%] 16 [4.5%]

9 [7.5%]

8 [6.7%] 1 [35.8%]

7 [5.9%]

6 [3.4%]

5 [4.2%]

4[7.8%]

3 [8.4%]

Figure 14 — Distribution of attacks on activity class sizes

As one can see in Figure 14 the taxonomy developed here is rather fine-grained. This figure
shows for example that 35.8% of the classified attacks form their own class. On the other
hand one can see that also rather large classes with up to 16 class members, accommodating
4.5% of the attacks classified, have been identified.

Figure 14 shows the distribution of attacks on activity class sizes based on the most fine-
grained classification provided by the activity taxonomy developed in this chapter. In Chapter
5: we discuss various classification results that are more coarse in the sense that not every set
of activity categories provided by the activity taxonomy was taken into account. This
discussion allows the identification of very important attack meta-classes, knowledge that
shall be reused when evaluating IDSes.

3.5 Discussion

The results of this attack classification reveal facts that correspond to the common reception
of attacks as discussed in Appendix A:

e A large number of attacks that involve some form of network communication, are in
fact one of today’s major problems.

o The figures in Appendix A show that processes are of high importance, on the one
hand they serve as a target in the first steps of an attack and on the other are often
misused as an interface to attack other objects.

e Processes are rarely used as interface objects in combination with communication
protocol layers which also makes sense as it clearly distinguishes between attacks that
run locally and attacks that are staged remotely.

40

Towards a Taxonomy of Intrusion Detection Systems and Attacks

e The statistical results and our ability to explain them make us confident that the
underlying taxonomy is sound.

However, there is one point that we shall mention here. Considering the results presented in
Section A.3 and the list of affected objects identified a bit earlier in Section 3.2.1 we notice
that not all the affected objects actually show up in the diagram shown in Figure 29. So one
might ask the question why we actually introduced those seemingly superfluous affected
objects. The reasons are two-fold. On the one hand we were aiming at defining a taxonomy
that offers the best possible coverage which was the reason why we derived our taxonomy
from a typical computing system that included said affected objects. On the other hand we
believe that one has to classify even more attacks according to this taxonomy to actually find
attacks that fall into those rare categories. After all this classification is based on attacks as
posted on the bugtraq mailing list [SecFoc] or discussed in a CERT advisory etc. In these
forums attacks with low impact or attacks that require the attacker to have some important
privileges to actually launch them are not heavily discussed i.e., published. In other words
those attacks are generally not considered to be of high importance.

3.6 Conclusion

Based on the results of this attack classification we believe the activity taxonomy to be viable
to serve as the foundations of the activity assumptions because the classes of attacks identified
are sufficiently diverse and detailed. Also the identified attack classes relate well to the
attacks described in the past. As mentioned the space spawned by this taxonomy contains a
large number of elements. In order to be able to handle this challenge we will, when doing the
actual evaluation of IDSes, select elements that were proven to be relevant by this attack
classification. In addition we foresee an increase in generic activity meta-classes that can be
combined to dynamically extend the number of activities used during the evaluation process.

41

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Chapter 4: IDS taxonomy

In this chapter we develop a taxonomy for IDSes that is fine-grained enough without being
too detailed so that it becomes possible to evaluate IDSes for their potential of discovering
activities threatening the security policy, e.g. attacks.

Simply classifying an IDS into the class of behavior-based or knowledge-based (see Figure 6,
p. 3) systems does not enable us to draw precise conclusions neither about the attacks an IDS
is able to detect nor about the amount of false positives it could generate. In addition the other
sets of taxonomy categories shown in Figure 6 do not permit such conclusions. In order to do
so we propose an IDS taxonomy that is far more fine-grained. The proposed taxonomy aims
at describing the capabilities of an IDS with respect to the analysis of activities.

This taxonomy shall provide the needed framework to evaluate IDSes and to determine
whether a given IDS has the potential of detecting a given activity as threatening the security
policy, e.g. an attack. Also, it enables us, per IDS, to determine the relative costs of the
detection process in terms of memory, CPUs cycles etc.

— Filtering
— ID Engine / Data)
Detector Pre-Processing oo
Normalization
| General Instance Instance Part
Analysis Analysis
Generic sz L I:stTnc.e
IbS Attributes =z nalysis
B<
30
: (=%
Generic 2 é
Attributes)
Object
[E_— Sensor / Object
Information Source Attributes

Arguments

7 Request

Result

" Data

Protocol
Control Data

Figure 15 — IDS taxonomy overview

Figure 15 provides an overview of the taxonomy we propose for the classification and
description of IDSes. In the following sections we develop and refine this taxonomy. We do
so by first introducing a relatively simple model of IDSes that allows us to distinguish the
data and functionality provided by IDS components. In a next step we develop the
characteristics i.e., the taxonomy elements, required for the description of said components.
The semantics of the majority of these characteristics are then defined with respect to the
activity scopes introduced in Section 3.1. A minority of the characteristics do not need to be
defined with respect to activity scopes because they describe generic properties such as delay.
In a further step we introduce a notion of cost that can be associated with every IDS property.

43

Malicious- and Accidental-Fault Tolerance for Internet Applications

Some insights on how the taxonomy can be used to classify IDSes and how to represent this
classification in a database conclude this chapter.

As a side note, please note that in ID it is often not possible to separate fault diagnosis and
error detection clearly. This particularly applies to the more popular knowledge-based IDSes
because they are trying to identify signs of known attacks. Once these systems recognize a
known attack, they detect the error that may lead to security failure (i.e., error detection) and
at the same time they can already provide an indication about the cause of this error (i.e. fault
diagnosis). The latter may happen in the form of an alarm number. The ability to fault
diagnosis is far more limited in the case of behavior-based systems because these systems
generate more or less meaningless alarms once they detect that the system is no longer in an
acceptable state. In other words behavior-based systems detect errors that may lead to security
failure and security failures, implicitly.

4.1 Intrusion detection system model

IDSes are generally separated into a portion that deals with gathering information from an
information source (also called sensor) and a second portion that performs (security) error
detection by analyzing the collected data (also called detector, analyzer or ID engine).

Management Console

- Product specific
- Network management
- Alarm correlator

A Alerts
i Intrusion Detection System
Sensor Detector / ID-Engine
— Network probe - Data Pre—processing
- Lodfile adapter / parser |~ ®] - Instance Analysis
- Special monitoring E\Iljeaqtef/ (security error detection,
module fault diagnonsis)

Raw data

Information Source

- Network

- Audit records

- Syslog / Event Log
— Application Log

Figure 16 — Intrusion detection system model

Figure 16 illustrates this relatively simple IDS model’. This simplistic model leads to the
definition of the two main subtrees in our taxonomy, as represented in Figure 15. The
simplest form of an IDS consists of a single sensor that provides data to the ID engine which

7 This model is in compliance with the current IETF efforts pursued by the intrusion-detection working
group (IDWQG) to standardize the messages exchanged among ID components [DeHuDo0O,
WooErl01].

44

Towards a Taxonomy of Intrusion Detection Systems and Attacks

performs the analysis of the data presented. However, in the real world IDSes are a bit more
complex than shown in Figure 16:

e A more complex system may have several sensors that supply data to an ID engine.

e A slightly more complex system may be using one sensor that supplies data to several
ID engines.

e An even more complex system may consist of several sensors and ID engines.

It is worth noting that it is not always possible to draw a clear line between ID sensors and ID
engines, as shown in Figure 16. An example of such a problematic system is the work
described by Kerschbaum et al., in [KeSpZa00], where the IDS is embedded into the
operating system.

Sections 4.2 (resp. 4.3) describe the characteristics of sensors (resp. ID engines). Each
characteristic is defined by means of an attribute. Most attributes are boolean variables. In
other words, in most cases the attribute X describing characteristic Y of a given IDS
component will be set to true if and only if that component has the characteristics Y. A few
attributes are non-boolean variables that may take a value from a predefined set of values.

4.2 Sensor

In our model sensors are systems that transform the information provided by an information
source into a form suitable for further analysis by the ID engine.

To understand and model the semantic of the information the sensor passes to the ID engine,
we should take a close look at its internal. In most cases (e.g. commercial products) this is not
possible. Fortunately, most sensors are very simple and provide some basic parsing of the
data supplied by the information source only. In most cases such simple sensors can be
accurately described by taking a close look at the documentation of the IDS, by looking at the
information sources it uses, and by investigating the diagnostic output the ID engine generates
along with the alarms.

One of the first statements made in this document is that the quality of today’s IDSes is
generally rather inferior, with some exceptions. So, what about the quality of ID sensors? The
data transformation performed by ID sensors generally leads to loss of information. This
means that the amount of information that a sensor provides to the ID engine is a subset of the
information available at the information source. This reduction has several reasons.
Information may be suppressed on purpose because it is either believed not to be relevant for
ID or because it is too costly to pass on the information and to analyze it. In addition
information may be lost or damaged because of a failure in the information source e.g.
misperception of an ethernet Protocol Data Unit (PDU) or because some portion of the system
is saturated and starts skipping data.

Example: Consider a switched network that is monitored by a network-based IDS. This is
generally done by configuring network switches such that they forward a copy of every PDU
transferred to a specific monitoring port of the switch. If the overall amount of traffic
monitored surpasses the capacity of the monitoring port the switch starts dropping packets.
As we shall see later even if the monitoring port and the host running the IDS are well
equipped (e.g. gigabit-ethernet), information might be dropped at the ID engine for similar
reasons.

Please note that in this work we do not investigate the probabilistic aspects of whether a given
or a given activity might or might not get processed for such reasons.

In the following, we describe the characteristics of the sensors in terms of two families:
activity scope independent and activity scope dependent attributes. The resulting sensor
description will enable us to answer the question whether a given sensor is providing

45

Malicious- and Accidental-Fault Tolerance for Internet Applications

sufficiently detailed information to enable the ID engine to properly detect and to recognize

an attack.

4.2.1

Activity scope independent sensor attributes

The sensor attributes described in the following are independent of activity scopes. This
means they do not have to be considered with respect to an activity scope in order to define

their semantics.

Sensor /
information Source

Generic
Attributes

reporting time
reporting timestamp
reporting delay

information source type

Figure 17 — Overview of activity scope independent sensor attributes

As Figure 17 shows, we have identified the following four activity scope independent sensor
attributes (the table headings describe the attribute and the follow-up rows describe the

permitted values):

Reporting time

The reporting time denotes the point in time at which evidence of an
activity is observed and reported to the ID engine. This property is
not so important for the detection process itself, but it may influence
timeliness of the IDS.

Post-execution

During-execution

Pre-execution

In the most common case a sensor will pass on the data to the ID
engine after the activity has been terminated i.e., post execution.

In some rare cases a sensor will report an activity after it has started
but before it terminates i.e.,. during execution.

This last case does not describe IDSes anymore as it analyzes
activities before they actually happen. Such systems may deny an
activity from being executed and are therefore merely policy
enforcement systems. For an example of such a system see the work
by Hutchison and Welz [HucWel00].

Reporting delay The delay between the point-in-time an activity is observed i.e.,
identified, and the point-in-time the activity is reported to the ID
engine. Based on our expertise and experience with various sensors,
we arbitrarily express that property in terms of the following ranges.

Less than 3 1t takes the sensor less than 3 seconds to pass the data describing the

seconds activity observed on to the ID engine.

Less than 1 minute

Less than 15
minutes

More than 15
minutes

Batch

The sensor data is processed in batch mode. There is no fixed delay
between the observation of an activity and the actual analysis of the
activity data by the ID engine.

46

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Reporting The reporting timestamp denotes the timestamp a sensor assigns to

timestamp an observation when it is reported to the ID engine. Many ID sensors
do not provide such a timestamp and leave it up to the ID engine to
set a timestamp whenever it finds something worth reporting to the
administrator i.e., whenever the IDS is issuing an alarm.

None The sensor is not providing any timestamp information along with
the reporting of an activity observed.

Start of activity The timestamp provided by the sensor corresponds to the time at
which an activity has been started.

End of activity The timestamp provided by the sensor to the end of an activity.

Table 24 — Activity scope independent sensor attributes

4.2.1.1 Information source type

The sensor attributes just introduced are of importance when considering the diagnostic
capabilities of an IDS, but hardly affect the detection capability of an IDS. This is different
for the last activity scope independent sensor attribute, the information source type.

The information source type determines the view the IDS has from the system it monitors to a
large extent. This fact is also taken into account in the IDS taxonomy by Debar et al.
[DeDaWe00] where IDSes are classified based on what they call audit source location (see
also Figure 6). However, knowing the location where information may be gathered is
important and useful for the description of IDSes but only implicitly describes the inherent
properties of the information gathered from the respective sources. For instance, when a
network-based IDS is gathering an URL from the network, it is impossible for the IDS to
clearly determine how the webserver software will be interpreting the URL—especially when
the presence of attack obfuscation techniques are assumed. The situation is different when
considering a host-based IDS that analyzes the access logs as they are created by the
webserver software. There the information is available in a form less prone to obfuscation and
more importantly in the way the webserver has actually interpreted the respective request. In
other terms, in this example, the network-based IDS does not share the same view on the data
as the monitored webserver, whereas a host-based IDS that analyzes the webserver logs does
share the same view on the data.

When making these considerations we were able to identify two main classes of information
sources and a series of sub-classes. The two main classes are raw data sources and log data
sources. The difference between the two is that raw data sources provide a non-transformed
view of the data as it is sent by an activity. In contrast, log data sources represent a view on
the manner in which received data was interpreted by the monitored system and not a view on
the data itself.

We further divide the two classes into a total of five sub-classes that mainly denote the
location of the information source within the monitored system. The raw data class is sub-
divided into an external and an internal class of information sources. External information
sources provide a view on the raw data before it reaches its destination—the monitored system.
This is where classical network-based IDSes based on network sniffers fit (examples:
[CiscoNR99, ISSNet99, Paxson98, Paxson99, Roesch99]). Internal raw data information
sources access the raw data at the monitored system and within the same activity scope as the
monitored system it does. So far mainly network-based IDSes that inspect the data on a host
as it traverses the network stack have been implemented [ISSSer00]. However, it is
conceivable that such sensors may also be implemented directly into applications. For
instance one could envisage a webserver sensor module that inspects the transport layer data
as it is received by a webserver daemon.

47

Malicious- and Accidental-Fault Tolerance for Internet Applications

The second main class of information sources, the log data sources can be divided into three
sub-classes. Here we distinguish information sources provided by operating systems such as
audit logs [LCRM98] or system accounting logs i.e., sources provided by applications and so-
called meta information sources that typically already include interpretations of observed
activities. Access logs are a typical example of application logs [Weinma98], as they are
maintained by webservers. For the meta information source the most typical examples are
probably alarms as they are generated by other IDSes".

Information
Source Type

Network Packet Sniffer
ated Appcaton Semsor
R dttnedoa

Log }74{ Application Level }* Application log

Figure 18 — Overview of information source type taxonomy

Figure 18 provides an overview of information source type taxonomy just introduced and also
includes the information source type examples mentioned above. In the table below we
describe said source type examples in more detail.

Information source
types

The value set used for the description of this attribute has been
derived and extended from the audit source location category of the
IDS taxonomy by Debar et al. [DeDaWe00] as shown in Figure 3, p.
3.

Data external

Data internal

Network packet sniffer: The IDS sensor sniffs its data from the
network, e.g. of such systems are snort [Roesch99] and Bro
[Paxson98, Paxson99].

Integrated network sensor: The IDS sensor monitors the data as it
traverses the network stack, e.g. at the socket interface. An example
of this system is [1SSSer00)].

Integrated application sensor: This type of sensor is similar to the
previous one. However, in contrast it is integrated into the
application daemon to be monitored rather than into the networking
stack itself. For instance, it is conceivable to build a sensor module
that can be loaded into daemons such as the apache webserver
software [Apache].

¥ Please note that this type of information sources operate at a different level that is not key to this
work, which is why we do not further investigate them here.

48

System level log

Application level
log

Meta log

Towards a Taxonomy of Intrusion Detection Systems and Attacks

OS audit log: The IDS sensor analyzes the audit log, e.g. C2 audit
log as written by the AIX operating system [LCRMY8]. An example
of this system is daemon-watcher by Wespi et al. [WDDNYS,
WeDaDe00, WesDeb99].

Accounting log: The IDS sensor analyzes system account logs that
report accounting information such as login sessions from users,
consumed system resources etc. Examples of such systems are IDES
and NIDES developed by SRI [JLADGJ93, lunt90a].

Application log: The IDS sensor gathers the log information
provided by applications. An example of an IDS operating on the
application log is WebIDS [Almgre99].

ID-alarms: ID-alarms fall into meta log class and stand for pre-
processed information as it may be generated by a data reduction
tool or by another IDS. In fact the output i.e., the alarms, generated
by an IDS can be considered to be pre-processed log data. An
example of this system is RiskManager offered by Tivoli Systems
[TRMO0].

Table 25 — Activity scope independent sensor attributes—Information source types

4.2.2

Activity scope dependent sensor attributes

This section deals with information items that shall be discussed in close relation to the notion
of activity scope introduced earlier in Section 3.1. More precisely we define the semantics of
information items represented by attributes within the context of a given activity scope.

[name
Object ID

Object access permissions
owner

Attributes size

type
timestamp
duration

1 basic

options

Arguments

Sensor /
Information Source

T name

Request ID

T status

options

Result

input-stream

Data — output—stream
— up-stream

— down-stream
— PDU-data

— status

source 1D

[source nhame
— destination ID
— destination name
— ID

— type

— size

— fragment control
— stream control
— flags

— options

Protocol
Control Data

Figure 19 — Overview of scope dependent sensor attributes

49

Malicious- and Accidental-Fault Tolerance for Internet Applications

All the attributes shown in Figure 19 are explained in the following. In Appendix C: we
provide extensive examples of their semantics which can be defined with respect to a given
activity scope. These semantic definitions are made on the highest activity scope level
possible or on the level of functional activity scopes (see Section 3.1.3) where applicable. It
was actually one of the goals, pursued by the introduction of the functional scopes to avoid
semantic definitions on highly specific activity scopes such as protocols. Also please note that
if the semantics of a sensor attribute are defined on a given generic activity scope, it does not
necessarily mean that the attribute exists on every descendent activity scope.

The following table defines all the attribute categories and their attributes:

Object

The object category is made of two attributes (for examples see Table
45, p. 3):

Name

ID

The name of an object is generally human readable and, in most
cases, uniquely identifies an object.

An object identifier, in most cases, uniquely identifies an object by a
numerical or possibly alphanumerical identifier.

Table 26 — Activity scope dependent sensor attributes—object

Object attribute

The object attribute category provides additional attributes required
to describe an object. Please note that the state of an object is
captured in the data category. See also Table 46, p. 3.

Type If an IDS is able to obtain the information on the type of an object the
IDS can differentiate between similar objects in the same activity
scope, e.g. to differentiate among files, directories, links etc.

Access Access permissions of a given object specify the objects, e.g. users

permissions etc. that are permitted to access the object.

Owner The owner denotes the ownership of an object. This may include the
notion of group ownership. Examples are Unix filesystem objects.

Size The size of an object usually represents the storage or memory
required to represent the object.

Timestamp The timestamp attribute denotes timestamps such as creation time or
login time.

Duration The duration attribute denotes duration’s such as lifetime or the time
consumed.

Table 27 — Activity scope dependent sensor attributes—object attributes

Argument The argument category is used to represent arguments supplied to
calls, process, requests etc. We distinguish only two different
properties (see also Table 47, p. 3):

Basic The basic arguments represent the arguments directly associated
with a request, call etc.

Options Optional arguments represent arguments that require the sensor to

perform an additional effort to provide them.

Table 28 — Activity scope dependent sensor attributes—arguments

50

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Request The request category is also very small. It is used to name calls,
request etc. See also Table 48, p. 3.

Name The name of the request.

D The ID of the request made.

Table 29 — Activity scope dependent sensor attributes—request

Protocol control
data

The protocol control data category is a bit more complex than most
of the other categories. It needs to capture the variety of protocols
that have been defined. See also Table 49, p. 3.

Source ID

Source name

Destination ID

Destination name
ID
Size

Fragment control

Flags
Options

The source ID typically denotes the source address of the PDU
considered.

Like source ID, but instead of a numerical ID a name is used.

The definitions of the destination ID and the destination name is
identical to the definition of the source ID and source name. The only
difference is that they denote the receiver instead of the sender of a
PDU.

Like destination ID, but instead of a numerical ID a name is used.
The ID of a PDU helps a protocol to distinguish requests.
The size field denotes the size of a PDU.

Fragment control information is used to reconstruct fragmented
PDUs. The most typical example is probably the IP protocol.

Flags are used for a large variety of functionality.

Protocols often offer a number of other fields and options that are
not covered by the attributes listed above. We summarize those fields
and options here.

Table 30 — Activity scope dependent sensor attributes—protocol control data

Data

The data category is quite complex as well. In this category all
properties that can be considered as data of any kind are collected. As
to be explored further in future work, one can conceive attack
obfuscation techniques that may render any kind of data related to an
activity invisible to the ID engine. A typical example is the
fragmentation of I[P PDUs, which may make it impossible to analyze
the payload of IP PDUs for IDSes that are not able to recompose IP
PDUs. This effect can then be described by rendering the data
portion related to the activity invisible to the ID engine. See also
Table 50, p. 3.

Input stream

Output stream

Up-stream

This attribute represents the stream of data fed into an object, e.g. a
process.

This attribute represents the stream of data generated by an object,
e.g. a process.

This attribute represents the data that is sent to a server by a client.
The most prominent examples are sockets, pipes, and application
layer protocols such as HTTP.

51

Malicious- and Accidental-Fault Tolerance for Internet Applications

Down-stream This attribute represents the data that is returned by a server to a
client.
PDU-data The attribute PDU-data represents the data portion of a PDU. This

attribute applies for a wide variety of protocols such as UDP, TCP,
ICMP, IP, MAC etc.

Status data Status data represents the internal state of an object.

Table 31 — Activity scope dependent sensor attributes—data

Example: An IDS such as WebIDS [Almgre99] that parses webserver logs in the common log
format (CLF) [Weinma98] will be able to provide the following information to the ID engine
(considering the HTTP activity scope only):

® Request name

® Basic arguments

In addition the sensor provides protocol control data attribute source ID within the network
layer activity scope.

4.3 Intrusion detection engine

The ID engine, also called detector, performs error detection for errors that may lead to
security failure and to some degree fault diagnosis. It does so based on the information
gathered by the ID sensor as indicated earlier and as shown in Figure 16. The ID engine is
generally the most complex component of the IDS. It is also the component that varies the
most among the different approaches proposed and implemented by the ID community.

In general we were able identify three categories of attributes that separate the description of
ID engine characteristics. The sets are illustrated in Figure 15 and are named as follows:

e Generic characteristics: The category of generic ID engine attributes is very similar to
the one of the of IDS sensors. These attributes are also independent from activity
scopes.

e Data pre-processing: The data pre-processing attribute category contains a set of
activity scope dependent attributes that describe the operations an ID engine is able to
perform on the data provided by the sensor before the data is analyzed for signs of
errors that may lead to security failure.

o Instance analysis: The attributes of the instance analysis category are also activity
scope dependent and describe the ID engine’s abilities to perform security error
detection, which generally includes some limited degree of fault diagnosis.

In the following we first discuss the generic activity scope independent attributes and then
continue with the two activity scope dependent attribute categories.

4.3.1 Activity scope independent ID engine attributes

As mentioned, the set of generic activity scope independent ID engine attributes is similar to
the respective set used to describe sensors. Namely the alarm timestamp and the alarm delay
attributes shown in Figure 20 have very similar definitions to the respective sensor attributes
discussed in Table 24.

52

Towards a Taxonomy of Intrusion Detection Systems and Attacks

ID-Engine /
Detector

Generic
Attributes

alarm timestamp
alarm delay
behavior-based

knowledge—-based

Figure 20 — Overview of activity scope independent ID engine attributes

However, the set of activity scope independent ID engine attributes, also contains two
attributes that do not appear in the set of activity scope independent sensor attributes. These

attributes are used to distinguish detection methods.

After all we have been able to identify the following set of activity scope independent ID

engine attributes:

Alarm timestamp

This attribute describes the point-in-time an alarm timestamp

denotes, with respect to the information reported by a sensor. In other
terms this attribute tell us whether the alarm timestamp refers to the
beginning or to the end of a sequence of sensor reports that led to the
generation of an alarm. The possible values are identical to the ones
of the reporting timestamp attribute discussed in Table 24.

Alarm delay

This attribute describes the delay the described ID engine adds

between the reception of the last sensor report that leads to the
generation of a given alarm and the actual creation of the alarm. The
possible values are identical to the ones of the reporting delay
attribute discussed in Table 24.

Behavior-based

This attribute is a boolean variable and is used to denote the fact that

the described ID engine applies a behavior-based detection method or
at least uses a component that is behavior-based. See also Section
2.2.1.

Knowledge-based

This attribute is a boolean variable and is used to denote the fact that

the described ID engine applies a knowledge-based detection method
or at least uses a component that is knowledge-based. See also
Section 2.2.1.

Table 32 — Activity scope independent ID engine attributes

4.3.2

Data pre-processing ID engine attributes

In the most general case the ID engine has to pre-process the data obtained from the sensor
because the data may not yet been in a form for the instance analysis where the actual security

error detection is done.

ID-Engine /
Detector

Data
Pre-Processing

Data
Normalization

Filter

7 single—byte character decoding

— multi-byte character decoding

[— string resolution

— data decoding

[symmetric cryptographic operations
— asymmetric cryptographic operations

7 address

[— protocol control data
— object

— object attribute

[request

[~ argument

[— data

— weekday

— daytime

Figure 21 — Overview of data pre-processing ID engine attributes

53

Malicious- and Accidental-Fault Tolerance for Internet Applications

On one hand this means filtering of data that is either irrelevant or for some reason not of
further interest. On the other hand it is often possible to represent data in various different but
valid ways. In order for the ID engine to be able to analyze this data, it needs to be
normalized.

In the following we first discuss the representation of data normalization characteristics and
then in a next step the filtering of data.

Data normalization =~ Application layer protocols in particular, often offer several different
ways to express the same fact i.e., it is often possible to formulate an
information item using varying syntactical expressions that have the
same semantic meaning. For examples see Table 51, p. 3.

Such a high degree of freedom in the representation of data enables
adversaries to slightly modify their attacks such that it becomes
significantly more difficult for IDSes to detect them. Sometimes this
high degree of freedom actually enables the staging of an attack. For
instance, this may be the case if the attacked object is performing
sanity checks on the data that would normally reject such suspicious
data. However, if these sanity checks do not take into account the
various data encoding techniques, the adversary might be able to
stage an attack by encoding the malicious data—thereby bypassing the
said sanity checks.

Generally speaking, data normalization is especially important for
knowledge-based systems. This is because an ID engine’s inability to
normalize data may result in attack signatures not matching.

Single-byte Single-byte character decoding represents the ability to decode
character single bytes that have been encoded by some placeholder—typically
decoding their numerical ASCII value.

Multi-byte Standards such as the UNI character encoding standard support the
character representation of large alphabets (more than 255 characters). Often
decoding those encoding schemes offer several possible representations for the

same character, which increases the complexity of the decoding work
to be performed by the ID engine.

String resolution Escape sequences are frequently used to change the appearance of
data. Examples are the quoting of strings, the use of a backslash
character in front of a character that does not need to be escaped, or
the use of shortcuts. If such techniques are used, an IDS needs to
recognize them before performing any further analysis.

Data decoding Data may be encoded in various ways and has to be decoded for
meaningful analysis. Typical encoding techniques are the
compression of data or the base64 encoding.

54

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Symmetric We are not aware of I[DSes that perform cryptographic
cryptographic transformations on the data they observed. However, it is
operations conceivable that IDSes perform such transformations on the data
/ they observe. In our case this applies to information items as they

were identified in Section 4.2.2. For instance, it is conceivable that a
Asymmetric network-based IDS that is monitoring a webserver, using SSL (secure
cryptographic socket layer) to encrypt customer data and transactions, is holding a
operations copy of the webserver’s private key. Knowing the webserver’s private

key enables the IDS to monitor encrypted https traffic. Please note
that we do not promote such solutions as they carry inherent
weaknesses such as the cost in terms of processing, the problem of
recovering from missing or corrupted PDUs, privacy concerns, risks
created by the fact that private keys are stored at multiple places etc.

Table 33 — Data pre-processing ID engine attributes—data normalization

Filtering

Filtering of data reporting activities may be an important
measurement for the elimination of false positives or undesired
alarms in general. A typical example is the filtering based on network
addresses if a given host is known to cause many false alarms, even
though the host is known to be harmless. For instance, this may be
caused by a broken implementation of the host’s TCP/IP stack that is
generating many fragmented packets’. Another cause might be a host
that is used to scan the network for vulnerabilities and would
therefore cause a real storm of alarms to be generated each time a
network scan is performed.

Our model allows filters to be defined on every information category
as defined in Section 4.2.2. In addition to those data categories
address data, weekday, and daytime have been added.

Object

Object attributes
Arguments
Request

Data

Protocol control
data

See Table 26.
See Table 27.
See Table 28.
See Table 29.
See Table 31.
Excluding address data. See Table 30.

Address Address data is listed separately as it is one of the most important
information items used in filtering rules.

Weekday We have extended the list by two notions of time period—weekday and

/ daytime. These notions of time period may be required from an IDS
to eliminate alarms, known to be caused by harmless regularly

Daytime occurring activities. Examples are, scheduled DNS zone transfers.

Table 34 — Data pre-processing ID engine attributes—filtering

? Older Cray operating systems were known to erroneously set the fragmentation bit on every packet
they sent to the network.

55

Malicious- and Accidental-Fault Tolerance for Internet Applications

4.3.3 Instance analysis ID engine attributes

In this section we develop the IDS taxonomy elements used to represent the error detection
and fault diagnosis capabilities of ID engines. In order to do so we introduce the concept of
so-called instances. As already done for other attributes, the semantic of an instance is defined
by the activity scope to which it relates. More precisely, an instance represents the
instantiation of a given activity scope.

Multiple Instances
Instance
Instance
Instance|Instance|Instance| | Group
Part Part Part
Instance
Instance|Instance|Instance Instance Notion App. Protocols Trsp. / Netw. / Link Layer Processes
‘ Part | Part | Part }Instance £p i Y
N Instance Part prot. statement fragment thread
Instance Part Group Instance Part Group transaction part fragments of a PDU threads of a process
Multiple Instance Parts | parts of transactions fragments threads
\'”%gﬂce '”%g’r}ce\'”%gﬂce\ Multiple Instance transaction connection / PDU process
Instance - P :
s e Instance‘ Parts Instance Group session - application / service
Part Part Part Multiple Instances transactions connections / PDUs processes
a) b)

Figure 22 — Overview of instance analysis (excl. bi-directional instance analysis)

As illustrated in Figure 22, an ID engine analyzes instances not only at the instance level.
Depending on the activity scope of an instance, the ID engine may be analyzing instances,
instance parts, or both. The concept of instances and instance parts can be illustrated by
considering an instance of the activity scope IP. There it is intuitively clear that the instance is
equivalent to an IP PDU. However, as mentioned earlier, an IP PDU can be split into so-
called fragments. Using the more generic notion of instances, these fragments are equivalent
to instance parts.

In addition these IP fragments are strongly related to each other—last but not least because the
receiver needs to be provided with the information required for the recomposition of the
original IP PDU. The fact that a more or less strong dependency among instance parts and
also among instances might exist leads to the introduction of instance groups and instance
part groups. More generally such groups consist of instances and instance parts that are—by
definition—related at a higher abstraction level.

Even though instances and instance parts may be completely unrelated by design and are
therefore not building a group, e.g. two processes that implement two different services, it
happens that they influence each other nevertheless. This is a fact that has to be addressed in
this taxonomy as well. In the following we call an ID engine able to perform analysis across
multiple instances capable of performing cross-instance analysis, respectively cross-instance
part analysis if the ID engine is able to perform analysis across multiple instance parts that do
not belong to the same instance. In fact many security problems arise because instances
interact in a way they were not designed for or interact even though no interaction at all was
foreseen.

The structure of the taxonomy as shown in Figure 23 considers instance and instance part
group analysis to be a sub-branch of cross-instance, respectively cross-instance part analysis.
We do so because the former can be considered to be a subset of the latter. More precisely the
analysis of an instance group can be considered to be cross-instance analysis of instances that
share common criteria. The same naturally also applies to instance parts.

When combined with the notion of activity scopes, the concept just introduced provides a
generic and systematic way to describe the capabilities of an ID engine. However, one might
ask—how does this concept of instances relate to activities? As mentioned, activities are

56

Towards a Taxonomy of Intrusion Detection Systems and Attacks

described by the combination of IDS characteristics required to process a given activity and to
possibly identify it as an attack. This means that activity descriptions include combinations of
instance analysis related ID engine characteristics as well. However, an activity can typically
be analyzed in several different ways i.e., based on instances of several different activity
scopes. For example, a typical buffer overflow attack can be detected based on a deviation of
the sequence of system calls made by a process or based on the observation of a too long
input string. Please note that therefore, although one might be tempted to do so, instances
cannot be equated to activities or the reports of activities. After all instance analysis related 1D
engine characteristics are one of the most important elements of the process of ID.

Single Instance

Analysis

Part Analysis

Instance Part
Analysis

ID-Engine
(Detector)

General Instance
Analysis

Generic Analysis
Techniques

Level

L Bi—directional

Analxsis Level

basic analysis

logic verification
semantic verification
basic analysis

logic verification
semantic verification

Cross—instance Analysis
Part Analysis Level
[=—> |
Generic Analysis Instance Part Analysis
Techniques Group Analysis Level
[———
Generic Analysis
AnaIyS|s Tech. Techniques
{ Timing duration
Analysis time period

Single Instance

Data Category
Analysis

Cross—Instance
Analysis Tech.

Sequence
Analysis

Statistical
Analysis

Info Item [string matching
Analysis [adv. string matching
— regular expression

— size verification

7 string matching

[adv. string matching
— regular expression
— size verification

r— fixed seq. matching
— advanced seq. m.
— stateful

— timing

T <16 attributes,

~ see next figure>

Analysis

Instance
Analysis

Generic Analysis
Techniques

Cross-instance

Analysis

Level K
—_——

Analysis

Analysis |
Level

e S

Generic Analysis
Techniques

Instance Group
Analysis

Analysis
Level

Cross-Instance
Analysis Tech.

[————

Generic Analysis
Techniques

Cross-Instance
Analysis Tech.

Figure 23 — Overview of instance analysis ID engine attributes

Figure 23 shows an overview of all the instance analysis related ID engine attributes that we
have identified and that shall be discussed in the following. The figure shows the two
branches of what is called general instance analysis. The first branch illustrates the description
scheme for the analysis capabilities of an ID engine with respect to instance parts, whereas
the second branch does the same for instance analysis. The two branches are identical except
for the fact that one describes instance analysis and the second instance part analysis. When

57

Malicious- and Accidental-Fault Tolerance for Internet Applications

looking more closely at the two subsets one can find the different types of instance and
instance part analysis identified above.

However, Figure 23 shows even more than that. In the following we discuss the various sub-
sets of attributes i.e., the analysis levels and analysis techniques, that we have identified in
order to characterize and describe ID engines. The analysis techniques are used to describe
the way the ID engine analyzes a given instance whereas the analysis levels are used to
describe the level at which the analysis is performed. Finally we provide a series of examples
in C.3.

433.1 Instance analysis levels

As shown in Figure 26, for every type of instance and instance part analysis we distinguish
between analysis levels and bi-directional analysis levels. The introduction of the notion bi-
directional analysis levels is motivated by the fact that an ID engine often has to analyze
protocols and other instances that are of bi-directional nature. Because most protocols and
other instances such as system and function calls are bi-directional by definition and the
analysis of such instances requires additional capabilities from the ID engine, the attributes
describing the instance analysis levels have been divided into the two said subsets.

When considering the different analysis levels, we distinguish three different analysis levels
that range from basic analysis over logic verification to semantic verification. These analysis
levels were inspired by Dobson’s [Dobson89] abstraction levels (see also Section 2.4.3) and
need to be interpreted separately for each instance analysis type.

In the following we define these three analysis levels at a conceptual level. In addition we
provide interpretation guidelines with respect to the various instance analysis types. Please
note that every higher-level analysis level comprises any possible lower-level analysis level.

Also please note that every instance analysis level has to be considered in conjunction with an
activity scope in order to define its semantics. In Section C.3.1 we provide a series of
examples where we demonstrate how the various analysis levels have to be interpreted with
respect to activity scopes. It is also worth mentioning that for practical reasons, we consider
every single instance that cannot be split into instance parts to consist of one single instance
part. For example, we consider every single threaded process to consist of one thread.

Basic analysis Basic analysis denotes the fact that a given ID engine performs a
very low-level analysis such as simply recognizing the thing of
interest. The thing of interest can be an object, a request etc. and is
defined by the respective instance or instance part-analysis attribute
sub-branch and the effective activity scope.

Single instance The ID engine identifies instances and instance parts e.g., the IDS is

and instance part able to distinguish protocol sequences or protocol statements. Based

analysis on this knowledge the IDS might apply further analysis, such as
string matching on the observed data. See also Table 52 and Table
53.

Instance and The ID engine associates instances, respectively instance parts, as

Instance part belonging to the same group. In the case of instance parts one can

group analysis view it as the parts of an instance being associated by the ID engine.

See also Table 54 and Table 56.

Cross-instance and The ID engine associates instances and instance parts that are
cross-instance part formally unrelated.
analysis

Table 35 — Instance and instance part analysis levels — basic analysis

58

Towards a Taxonomy of Intrusion Detection Systems and Attacks

In Table 35 we provide definitions of the instance and instance part analysis level basic
analysis with respect to the three different main types of instance and instance part analysis.
We omit the repetition of the respective definitions for bi-directional instance and instance
part analysis levels because they are highly similar to what is already defined in Table 35.
They just extend the respective definitions towards the analysis of bi-directional instances and
instance parts. We also do so in the following definitions of the analysis levels logic
verification and semantic verification.

Logic verification

The analysis level logic verification denotes the fact that a given ID
engine verifies the thing of interest at the logical level. As before, the
thing of interest is defined by the respective instance or instance part
analysis attribute sub-branch and the effective activity scope. In most
cases this is equivalent to syntax verification.

Instance and
Instance part
analysis

Instance and
instance part
group analysis

Cross-instance and
cross-instance part
analysis

The ID engine verifies the logical correctness of instances and
instance parts. In most cases this is equivalent to syntax verification.
In this context it is worth noting that in the domain of ID, instances
do not need to be complete or logically correct to be considered as
an instance. In fact many attacks are manifested by incomplete
instances. See also Table 52 and Table 53.

The ID engine verifies the logical relation among instances and
instance parts belonging to the same group. See also Table 54 and
Table 56.

As we are not aware that cases where a logical dependency among
instances and instance parts, unrelated by definition, exist, we do not
further define this particular level.

Table 36 — Instance and instance part analysis levels—logic verification

Again we omit the bi-directional instance analysis types for the same reasons as already
mentioned. A simple example that can be used to illustrate bi-directional logic verification is
TCP. There an ID engine is considered to be performing bi-directional logic verification if it
verifies that the TCP-PDUs exchanged in both directions fulfill the protocol specification.

Semantic
verification

If an ID engine performs at the semantic level it means that it is
verifying the semantic correctness and acceptability of the thing of
interest. The thing of interest is defined by the respective instance or
instance part analysis attribute sub-branch and the effective activity
scope. In most cases this is equivalent to the verification of security
policy compliance. For example, the detection of the fact that a
confidential document is being sent to some non-trusted party, using
a perfectly valid mail transaction i.e., mail message, falls into this
category.

Instance and
Instance part
analysis

Instance and
instance part
group analysis

Cross-instance and
cross-instance part
analysis

The ID engine verifies the semantic correctness of the instances and
instance parts. See also Table 52 and Table 53.

The ID engine verifies the semantic correctness of the relation
among instance and instance part group members. See also Table 54
and Table 56.

The ID engine verifies the semantic consistency and acceptability
among instance parts and instances. See also Table 55.

59

Malicious- and Accidental-Fault Tolerance for Internet Applications

Table 37 — Instance and instance part analysis levels—semantic verification

Again by referring to the bi-directional analysis, we illustrate bi-directional semantic
verification using the example where an ID engine detects the fact that a protected, non-public
web page was revealed to the public. In order to do so, the ID engine has to recognize that a
HTTP request that is asking for a protected page is fulfilled by the webserver.

Example: To illustrate the taxonomy elements just introduced, we consider once more
WebIDS [Almgre99]. WebIDS mainly operates within the HTTP activity scope. Within this
activity scope it is able to verify the semantics of HTTP request i.e., instances—even at the bi-
directional analysis level. This means that it cannot only detect suspicious requests (semantic
instance verification), it can also determine whether they were successful (bi-directional
semantic instance verification). After all it does not perform semantic verification across
requests, but it is able to identify groups of requests i.e., instance groups, based on a common
source IP address or user ID (basic analysis of instance groups). This description is not
complete.

4.3.3.2 Generic analysis techniques

Figure 23 shows not only the instance analysis levels but also the instance analysis
techniques. The techniques developed and described in the following are of a relatively high
level. They merely describe the resulting ID engine capability rather than the implementation
used to achieve a given capability. For instance, the stateful analysis of a sequence can be
achieved using various different techniques such as state machines or petri nets. Although we
agree that state machines and petri nets are not the same, they both represent a stateful
technique to analyze sequences.

As shown in Figure 23, the generic analysis techniques apply to each of the six instance and
instance part analysis types. We consider all these techniques separately i.e., per analysis type.
We do so because we need to reflect differences such as the fact that an ID engine is capable
of performing string matching on IP fragments i.e., instance parts, but not on groups of IP
fragments or on completely recomposed IP PDUs.

As shown in Figure 23, we have identified three sub-sets of attributes which describe
techniques that can be applied on single instances and single instance parts. Their
identification was relatively simple—for instance, considering any kind of PDU-what is the
information one can potentially use for further analysis? There are basically three things. First
one can record the header and the data portion of the PDU for analysis. In addition one knows
the point in time at which the PDU was observed. Similar considerations can be made for
most other activity scopes and for cross-instance and cross-instance part analysis. Using more
general terms we have therefore identified the following three sets of generic analysis
technique attributes: information item analysis techniques, data category analysis techniques,
and timing analysis techniques. Please note that information item analysis techniques include
all the information items described in Section 4.2.2 except the data items described in Table
31-these data items are covered by the data analysis techniques instead.

Before starting a discussion on the various attributes used to describe these techniques it is
worth mentioning that not every single technique represented by one of the attributes
described in the following, is applicable for every type of instance analysis.

4.3.3.2.1 Timing analysis techniques

The attribute sub-set describing the timing analysis techniques is the smallest and consists of
two members only:

Timing analysis
techniques

60

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Time period The time period attribute denotes that the ID engine is able to verify
whether the time period e.g., daytime, instance, instance part,
instance group etc., observed is acceptable.

Duration The duration attribute denotes that the ID engine is able to verify
whether the time it took the monitored system to perform a task is
acceptable.

Table 38 — Instance and instance part timing analysis attributes

4.3.3.2.2 Information item analysis

Especially, but not solely, when verifying the logical and semantic correctness of instances,
instance parts etc., information items often need to be analyzed for their content. As
illustrated in Figure 23, we have identified four additional attributes for the description of the
respective ID engine characteristics. Three of them address the content and one the size of the
information item. Please note that when referring to information item within this context, we
refer not to any information item provided by the sensor, but the information items belonging
to the data category (described in Table 31).

Information item
analysis

String matching String matching allows a given sub-string to be identified within a
string.

Advanced string Advanced string matching additionally offers the possibility to go a

matching bit further than just the identification of known strings by allowing
case insensitive matching and the use of ‘don’t care’ character
placeholders.

Regular Regular expressions generally allow a far more sophisticated

expression specification of the matching conditions. Examples: Perl [Perl87]

matching regular expressions.

Size verification Size verification is a very simplistic check on the elements of a given

instance. In case the ID engine has a basic analysis of the instance in
question only, size verification can be seen as a very limited syntax
check. In case the ID engine is able to verify the logical correctness
of an instance the size check may be applied in addition to identify
suspiciously-sized instance elements.

Table 39 — Instance and instance part information item analysis attributes

It is important to note that an ID engine might perform information item analysis without
verifying the syntactical correctness of the instance. This is actually an important cause of
false positives and false negatives. For example, IDSes ‘blindly’ applying string matching on
protocol statements may result in erroneous reports of suspicious strings that are harmless or
even normal within the context they appeared. However, by applying string matching on
protocol statements it is possible to perform some limited semantic verification, which is
often used to identify undesired keywords in a flow of data.

4.3.3.2.3 Data category analysis

The set of attributes described above within the context of information item analysis explicitly
excludes the data category as introduced in Table 31. This is done because in real-world
settings the data portion of an instance is often not as easily accessible as other information

61

Malicious- and Accidental-Fault Tolerance for Internet Applications

items related to an instance. An example is HTTP where the HTTP request is often treated
differently than the data associated with the request i.e., the document served to the client or
the data posted by the client. Also ID engine’s capabilities with respect to the data category
items may vary because of said reason.

We do not repeat the attribute definitions here because they are identical to the attributes as
defined in Table 39.

4333 Cross-instance analysis techniques

When considering multiple instances or instance parts concurrently an ID engine can apply
additional analysis techniques than the ones just identified. The two additional attribute sub-
sets that we were able to identify describe the ID engine’s capabilities to verify the sequence
of instances and instance parts and to analyze the statistical properties of instance and
instance part sequences.

4.3.3.3.1 Sequence analysis techniques

The attributes that we identified for the different types of sequence analysis are quite similar
to what we have identified for the analysis of information items in Section 4.3.3.2.2. However
their semantic is a bit different as they address state transitions rather than string processing or
information analysis in general.

Sequence analysis

techniques

Fixed sequence Fixed sequence matching allows a given sub-sequence to be
matching identified within a sequence.

Advanced Advanced sequence matching also offers the possibility to go a bit

sequence matching further than just the identification of known sequences by allowing
the use of ‘don’t care’ placeholders or wildcards.

Stateful sequence In the case of stateful sequence analysis the ID engine analyzes a

analysis given sequence of instances or instance parts using a technique that
keeps the state of past observations. Examples are state machines,
petri nets etc.

Table 40 — Instance and instance part sequence analysis attributes

4.3.3.3.2 Statistical analysis

The last set of attributes discussed here is the set of attributes describing the way a given ID
engine analyzes statistical properties of sequences. Such analysis is required for the detection
of port scans or flooding attacks as it is implemented by IDSes such as Bro [Paxson98,
Paxson99] or Snort [Roesch99].

The description of these attributes that we provide in the following varies from the attributes
identified thus far because we have identified four sets of characteristics that have to be
combined.

relative limited complete occurence r
Staustlcal)
AnaIyS|s > <16 attributes>
absolute unlimited decay cost

Comparlson T|meframe H|stor Un|t
Accumulatlon

Figure 24 — Characteristics of statistical instance and instance part analysis

62

Towards a Taxonomy of Intrusion Detection Systems and Attacks

As illustrated in Figure 24, the combination of these four sets of characteristics that contain
two characteristics each, results in a total of 16 attributes that are used to describe statistical
instance and instance part analysis techniques.

The following tables describe the four sets of characteristics that we have identified for
describing the statistical instance analysis performed by ID engines.

Comparison Relative vs. absolute measure

Relative An ID engine is considered to be performing relative measures of
class instances and instance parts if it is comparing the measures
made for one class to measures made for another class.

Absolute An ID engine performing absolute measures of instances and
instance parts is just considering a class of instances without taking
other classes into account.

Table 41 — Statistical instance and instance part analysis—comparison

Timeframe Limited vs. unlimited timeframe measure

Limited The ID engine measures i.e., counts, instances and instance parts
with respect to a given limited timeframe. The resulting measurement
is a frequency. This is commonly implemented using a sliding
window.

Unlimited The ID engine simply counts or accumulates instances, instance
parts, or measurable properties of these. This means that the
timeframe is unlimited.

Table 42 — Statistical instance and instance part analysis—timeframe

History Complete vs. decay
accumulation
Complete The ID engine accumulates measures made within the measurement

timeframe without fading out older measurements.

Decay The ID engine gradually decreases the weight of past measurements
that were made within the measurement timeframe.

Table 43 — Statistical instance and instance part analysis—history accumulation

Unit Occurrence vs. cost

Occurrence The ID engine simply measures the fact that instances and instance
parts occur.

Cost The ID engine applies a cost function to the instances and instance
parts observed. Typical examples are measures of size or CPU time
consumed etc.

Table 44 — Statistical instance and instance part analysis—unit

We have identified the categories of statistical characteristics defined above by extending the
work of others such as the Ph.D. thesis of Kumar [Kumar95] who has identified four different
types of statistical measures. He however, listed only four types of techniques that were found

63

Malicious- and Accidental-Fault Tolerance for Internet Applications

in the context of audit log analysis i.e., these techniques were less general than what we have
identified above.

Example: We again use the already well-known WebIDS [Almgre99] to illustrate the
statistical analysis attributes. WebIDS does not compare statistical information collected for
a group of HTTP with the information collected for another group. It operates in limited and
unlimited timeframes i.e., with or without sliding windows, and it can do either complete or
decaying history accumulation. Finally it only operates on the fact that a HTTP request was
made and not on the cost (e.g., number of served bytes) associated with a request. This
characterization leads to the following statistical analysis attributes that apply to WebIDS for
the HTTP activity scope:

o Absolute, limited, complete, occurrence based statistical analysis
o Absolute, limited, decaying, occurrence based statistical analysis
o Absolute, unlimited, complete, occurrence based statistical analysis

o Absolute, unlimited, decaying, occurrence based statistical analysis

4.4 Representation of IDS descriptions

In the sections above we have described an extensive and flexible taxonomy of IDSes. A
couple of IDSes have been described to validate this approach. Their descriptions have been
stored in a database in order to provide a rich environment to realize the evaluation of the
IDSes themselves. We have implemented this IDS description storage facility using a
combination of open-source software that consists of

e a SQL database MySQL [MySql],
e an Apache webserver [Apache],
e a PHP [PHP] scripting interpreter module, and

e phpMyAdmin [phpAdm], a package of PHP scripts that allows a simple and efficient
administration and population of the database.

MySQL is an open-source database that obtains significant support in the Linux community
and is easy to use and to maintain. In addition interfaces to many applications and tools such
as perl, prolog, PHP, Apache etc. already exist. Lastly we needed a simple interface to
maintain and to populate the DB which we implemented by using the phpMyAdmin package
that we operate on an Apache webserver. We have extended the phpMyAdmin slightly to
simplify the population of the DB.

4.4.1 Database structure

The database developed in the context of this work consists of three groups of tables. The first
group of tables documents and reflects the taxonomy developed in this chapter and the notion
of activity scopes including the activity scope graph as introduced in Section 3.1. The second
group of tables is used to represent the IDS descriptions. Database consistency is ensured by
referring to the first group of tables i.e., foreign table keys. The last group of tables has not yet
been developed and shall be used to store the results of IDS evaluations.

64

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Name > .
@ (LN) (L.N)

AN
IDS vendor @
(O,N)
Identifier Identifier
Generic_attribs
(O.N) ON)

Provides

(1.1) 11 1.1 @1
(O.N)

(ON)

@ superscope subscope @
(O.N) B (O.N)
Ao

Figure 25 — Entity relationship diagram of the database used to store IDS descriptions

The entity relation diagram shown in Figure 25 captures the first two groups of tables
mentioned. The diagram itself is based on the notation by Elmasri and Navathe [EImNav94].

The high degree of symmetry in the entity relationship diagram is apparent. This is caused by
the fact that an IDS entity consists of one or several sensor entities and one or several /D-
engine entities. The representation of the sensor and ID-engine attributes is very similar. Both
use the combination of the activity scope entity and the sensor, respectively the ID-engine,
specific property description entities to represent their properties. In the case of the sensor
entity the attribute description entity describes the various information items a sensor can
potentially provide (see also Section 4.2.2). The attribute description entity affiliated with the
ID-engine entity describes all the capabilities an IDS could potentially offer for the analysis
of activities (see also Sections 4.3.2 and 4.3.3). As indicated in Figure 25 by double lined
borders, both attribute entities, i.e. sensor information items and ID-engine capabilities, are
so-called weak entities. A weak entity type is defined by the fact that its entries become
unique only when considering an externally supplied element as well. In this particular case
all the relevant primary key information is supplied externally. In addition to the attribute
entities both, the sensor and the ID-engine entity are used to represent the generic attributes as
described in Sections 4.2.1 and 4.3.1.

The activity scope entity reflects the concepts introduced in Section 3.1. It is not only used
within the context of the representation of IDS subsystem properties but also for the
representation of the activity scope hierarchy i.e., the activity scope dependency graph. This is
achieved by the introduction of a relation that defines one activity scope to be activity sub-
scope of another activity (super-) scope.

Last but not least the entity relationship diagram also requires documentary information to be
included in the description of IDSes. A series of description fields and the introduction of the
IDS vendor entity achieve this. The IDS vendor entity simply represents the fact that a vendor
may offer more than only one IDS.

65

Malicious- and Accidental-Fault Tolerance for Internet Applications

4.5 Discussion

The IDS taxonomy developed in this chapter represents a pragmatic approach to describing
IDSes. It is important to note that the potential set of taxonomy elements is used to classify an
IDS, otherwise the taxonomy would fail to comply with the criteria listed in Section 2.2.

The taxonomy as it has been developed thus far carries the danger of not being non-
ambiguous i.e., not repeatable in the very same manner. This danger arises because of the
hierarchical nature of the activity scopes introduced in Section 3.1. The hierarchical nature of
the activity scopes allow an IDS to be described at a more specific or a more generic level
where both descriptions would be equally valid. This issue can be avoided by first defining a
classification policy that defines the level of detail at which IDS shall be classified. One could
for example agree that IDSes should be described as generically as possible or as detailed as
possible. However, this issue becomes even more complicated due to the fact that detailed
information about the capabilities of an (commercial) IDS is often not publicly available. In
such cases one has to estimate the capabilities of an IDS by observing its behavior when
confronted with particular attacks and by investigating the type of alarms a given IDS is able
to generate. In most cases one can also deduce quite a significant amount of information by
considering the information sources used by the IDS more closely. By doing so it is often
possible to deduce facts such as the way IP fragments or TCP streams are being processed by
an IDS.

Another point worth mentioning is the fact that the distinction between behavior-based and
knowledge-based IDSes becomes less obvious. This is due to the fact that most properties
used to describe IDSes can be used to describe both of these types of IDSes. We have
compensated for this lack by introducing separate properties that allow us to describe the
detection method employed by the IDS. This shall have an influence on the semantics of the
alarms an IDS model is generating.

4.6 Conclusion

The combination of the taxonomy introduced and the notion of activity scope introduced in
Section 3.1 provides us with a flexible and practical instrument to describe IDSes. This
taxonomy has been developed to describe the functional aspects i.e., the capabilities of IDSes
such that one can in a next step evaluate IDSes for their potential to detect attacks, generate
false positives etc.

66

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Chapter 5: Conclusions

5.1 Contributions

In this work we have developed a flexible and extensible way to describe IDSes that is based
on a taxonomy which itself is based on the so-called activity scopes. The activity scopes are
used as a basis not only for the description of IDSes but also to describe the static activity
characteristics identified within the context of the activity taxonomy. This taxonomy builds
the basis for the so-called activity assumptions. This concept provides us with a well-
structured foundation for the identification of activities that can be used to evaluate IDSes
based on their description as developed in this work. The activity taxonomy was developed
with the identification of activities that threaten or even cause violation of the security policy
e.g., attacks or intrusions in mind. We have then verified the viability of the activity
assumptions concept and actually exercised it by means of an attack classification where 350
attacks were classified according to the activity taxonomy.

Finally it is our strong belief that this work contributes important concepts derived from the
dependability domain to the field of ID and thereby to the goals pursued by MAFTIA.

5.2 Future directions

This work opens several avenues for future work. The natural continuation of this work is the
evaluation of IDSes. Based on the attack classification described in this document it becomes
possible to identify a representative set of activities that can consecutively be used to evaluate
IDSes in a systematic manner.

It is the goal of our future work to develop—within the context of MAFTIA—an intrusion
tolerant ID architecture. This architecture shall become dependable i.e., intrusion tolerant,
mainly due to the use of diverse IDSes. The immediate continuation of the work described in
this document—the evaluation of IDSes—shall enable us to eliminate common failure modes of
IDSes used within the ID architecture. Further it shall enable us to maximize the coverage in
terms of errors that may lead to security failure detected by the ID architecture.

67

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Appendix A: Attack classification

In Chapter 3 we developed a taxonomy of activities towards the characterization of activities
that are security relevant, in the sense that they threaten or violate the security policy. In
Section 3.4 we then explained how this taxonomy was used to classify 358 attacks as
described in IBM’s vulnerability database VulDa.

In the following we provide an extensive discussion of the statistical results that were created
based on said attack classification.

A.1 Distribution of dynamic fault characteristics

As mentioned in the case of the dynamic activity characteristics (Section 3.3) we allow the
combination of several dynamic activity characteristics to describe an attack i.e., we are using
the potential set.

In Figure 26 we only consider the communication model combined with the method
invocation model. By considering the communication characteristics (uni- or bi-directional) it
is apparent that more than half of the classified attacks involve some communication mean. In
fact a large number of attacks only involve bi-directional communication (105 attacks) or
execution within object context (45 attacks).

200

180

M other combinations e
W E object creation
M object read —
O object modification
bi-dir. com. ——
[uni-dir. com.

160

140

(2]

§ 1207 A Eexec. within object context N
3§ | bi-dir. com., object modification

g 100 + Ono combinations O
Ke]

€ 80

P4

D
o
!

N
o
L

]

20 1

e

"woo “Jip-iq
1X8}U00
108[go uIypIMm 08x%8
uoneslipow 308(qo

pea. j0alqo
uonealo J09lqo
‘Woo JIp-lun
uons|ep Jo8(qo

Figure 26 — Histogram of dynamic activity characteristics, excluding attributes

Please note that histograms shown in Figure 26 and Figure 27 are simplifications of the
underlying data. We have been able to identify 42 different combinations of dynamic activity

69

Malicious- and Accidental-Fault Tolerance for Internet Applications

characteristics in the data used for Figure 26 and 86 combinations in the data used for Figure
27. Figure 26 shows only 14 combinations of dynamic activity characteristics, the remaining
combinations collected in the group are called other combinations. Figure 27 shows 21
different combinations.

200

M other combinations
E no combinations —
B repeated activity, bi-dir. com.
D object read

M object modification

Binput relevant, exec. within object context ||
exec. within object context

E bi-dir. com., exec. within object context
Elinput relevant, bi-dir. com.

repeated activity

A bi-dir. com.
Oinput relevant

60 -

40 -

20 -

N\
i

"wod "Ip-1q
peal j09(qo
Alanoe
pajeadau [pe]
"Wo9o “JIp-lun
uonajep j08lqo
$92IN0S
a|dnnw el

o
ko)
[}
Q
Q
o
=
@
]
=
o
=}

jueas|al indui [1pe]
1X8]u0d
109[go ulyIm "0axe
uoneolipow jo8lqo
uiblio Japisul [Je]

Figure 27 — Histogram of dynamic activity characteristics, including attributes

Figure 27 incorporates the dynamic activity attributes as well (see Section 3.3.3). This enables
us to identify some very frequent types of attacks such as buffer-overflow or special character
attacks against server processes. These attacks typically involve bi-directional communication
and execution in object context. In addition, the input provided is of high importance because
it contains the buffer-overflow data or the special characters. One can easily identify these
attacks in the figure by considering the input relevant and exec. within the object context
portion of the first bar (53 attacks). In a similar way one can identify any kind of potential
buffer-overflow or special character attack by considering the second bar (90 attacks). Further
combinations of characteristics exist that involve other characteristics in addition to those just
mentioned above. For instance, a special character attack against a webserver that reveals the
password file also involves the read object characteristics.

A.2 Distribution of interface objects

The histogram shown in Figure 28 shows the distribution of interface objects used to stage
attacks. The total size of the bars shows that processes and application protocols are the most
frequently used interface objects. Taking a closer look at the respective bars one can further
deduce that application layer protocols i.e., all protocol layers and processes, are rarely used
in combination to attack another object. This is not surprising and it enables us to distinguish
clearly between attacks executed locally and remote attacks.

70

Towards a Taxonomy of Intrusion Detection Systems and Attacks

100

M other combinations
Ofilesystem object
HAprocess, system call
B system call
Oprocess

Nlibrary call -
RAtrsp. layer (conn. oriented)
Mapp. layer (conn. less)
Bapp. layer (multi-trans.)
Eapp. layer (single-trans.)
Benvironment

O no combinations

AW

V24
s

T T
—

©
o
>
. o
©
o
2

process
1/0O device
signal
middleware
semaphore
messages

system call
environment

~

[/}
%]
(0]
c
c
Q
&)
[
[}
>
©
Q.
[Z]
o
-

filesystem object

OS module / driver

app. layer (single-trans.)
app. layer (multi-trans.)
app. layer (conn. less)
trsp. layer (conn. oriented)
network layer (conn. less)
medium access control

app. layer (multi-trans., multipe conn.s)

Figure 28 — Histogram of interface objects

Moreover, it is apparent that the filesystem objects and the environment are not used in
combination with communication protocol layers to attack another object. This is a fairly
reasonable result, because filesystem objects are typically the affected objects of remote
attacks i.e., they typically do not serve as interface objects. In the environment things are
similar. Although the environment was involved in some remote attacks involving the telnet
protocol, remote attacks involving the environment are very rare.

A.3 Distribution of affected objects

The distribution of the affected objects shown in Figure 29 shows the clear dominance of
processes. They figure as the most prominent targets of attacks. As to be demonstrated later in
more details this corresponds to the observations made in A.2 which showed a large number
of attacks involving any kind of application layer protocol. Those attacks typically affect
network services that are commonly implemented by daemon processes. Attacks against the
filesystem objects are typically targeted towards sensitive files such as the password file.

71

Malicious- and Accidental-Fault Tolerance for Internet Applications

OS core CPU

networking 4% 1% firmware
stack 1%
5%
filesystem
object
13%

process
76%

Figure 29 — Distribution of affected objects

Please note, we are not classifying the impact of attacks here. The impact of an attack is
described by the failure-state to which an object may be forced. For instance, an attack that is
staged against a process or a file may result, in both cases, in command-line level access for
the attacker. So the affected object can be a process or the filesystem respectively. However
the impact of the successful attack is a (remote) shell being provided for the attacker.

A.4 Dynamic activity characteristics with affected objects

When considering the eight most frequent combinations of dynamic fault characteristics, we
obtain a similar picture as in Figure 26. However, it is apparent that the combination of the
activity characteristics bi-directional communication and execution within object context is
even more frequent than the sole execution within object context. This has already been
observed in Section A.1 and it demonstrates the importance of the attacks against (server)
processes. The latter can be verified by the fact that almost all the attacks falling into this
category, target processes.

72

Towards a Taxonomy of Intrusion Detection Systems and Attacks

120
M firmware
100 mCPU
80 - EOS core

B networking stack
Ofilesystem object

60 -

40 - O process]
20 4 . w
- ¥ § 3§ 5 £ 3
8 2 € ® L ? 8 o) 2
= . X 8 g 8 2 X °s g
© g2 3 ° 2 S =] S = 5
X e 8 S 2 Q z £ 8 [S
< v 8 ey Q ° € 5 = Q
£g © g 5 T
c 15 o o
S £ = g E £
_ © s o Q o
2 S e
° 5

Figure 30 — Histogram of dynamic activity characteristics with affected objects

Moreover we can identify the class of attacks that are using a communication mean to attack
the networking stack of system. Most of these attacks are denial-of-service attacks and
attempt to crash the whole system by sending some malformed PDUs to the host that put the
networking stack into an undefined state, called a failure state when successful. Finally we
can identify the important class of attacks that affect the filesystem by means of object
creation, modification, or reading. These attacks are typically staged on the local host.

A.5 Interface objects with dynamic activity characteristics

The distribution of the combination of interface objects is less bursty than the one found when
considering the affected objects. At first glance, processes are by far the most important class,
see first column Figure 31. However, a detailed analysis shows that the classes involving
application layer protocols sum up to an even more significant number.

73

Malicious- and Accidental-Fault Tolerance for Internet Applications

80

M other combinations

Eobject read

object modification

Bl object creation, object modification
Oobject creation

Nexec. within object context

B bi-dir. com., exec. within object context
bi-dir. com.
O uni-dir. com.

70

60

50 1

40

30 1

20

10

A DRRRRRRN

» \ . — n = © [. "
1] [} c = O = = o (] % Q
Q = 5 S35 ZSE¢ = 2 S 52 & &)
3] 2 9 & o 25 g ® © 8 a9 Lol it ©
<} ® E E~ < £ o =~ > 7} < = k=
<} B~ ~ =40 = ; 7 2 t o = [}
a g 59 s 2= = 5 @ 3 = 5 <© s c 8
c 7] 7] v o= = = = aQ & c c
[>0 T 0 > © = o & 25 £
>0 T — T - > E T = © 2 < = .
© = = 2L «© == ® 9 JSC2 5]
= a % .S . T ; S L) c <
; s cn s w o & <
g & §E® g% § 5

© T = (Ug

Figure 31 — Histogram of interface objects with dynamic activity characteristics

Further, we can identify the class of remote buffer overflow and special character attacks by
considering the class of the combined dynamic activity characteristics bi-directional
communication and execution within object context (appears in almost all the columns).

A.6 Interface objects with affected objects

When considering the relationship between affected objects and interface objects we can
identify the interfaces most frequently used to attack a given object. Besides the dominance of
processes as attack target objects and as attack interface objects we can identify filesystem
objects to be attacked merely using a process as an interface. This makes sense because
processes are the primary objects making use of filesystem objects. However, even more
frequently, processes are attacked using some application layer protocol indicating attacks
against daemon processes i.¢., services.

74

Towards a Taxonomy of Intrusion Detection Systems and Attacks

90
80 m firmware
70 ECPU
60 M OS core
50 Onetworking stack
401 Ofilesystem object
301 | Oprocess
20 -
10 |:| |=| |_| m
0 : : : : :
P -~ o ; : -~ G =) 5) 2
2 @ 2 & @ @ 8 k5 S a 5
é’ o ; = g w g B 3 % ; §
= ' - Zc = 5 g £
3 5 £ 355 3 5 S e 8 2
£ £ 59 g © £ @ s @ < <)
) 5 =2 T8 T 2 S 7 o o
= > 52 oS o i) S 3 > 5]
] B 2 2= > E= g g & 2
> = E® © 2 © 9] 1<) =
Ko s g . E . > = < 5]
s § &T g8 s g 8 B
g 53 © © g B
. 2]
g = <
Q
©

Figure 32 — Histogram of interface objects with affected objects

Besides this, one can observe the CPU to be attacked by processes only, this can be explained
by the fact that CPUs are generally attacked by exercising some malicious, possibly invalid,
command sequence. In most cases those attacks result in a denial-of-service by crashing the
whole system. Another observation one can make is that the networking stack is generally
attacked by transport and network layer protocols. This is similar to the observation we made
above when identifying the processes as a popular attack target.

75

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Appendix B: The vulnerability database

All the work described here is based or at least influenced by the experience and data that was
collected within the context of the maintenance process of the vulnerability database, VulDa.
The daily work with VulDa [DacAle99] and all those new vulnerabilities that are discovered
on a daily basis allowed us to gain an in-depth understanding of the nature of real-world
security issues and hacking activity in particular.

Over time this database evolved to a rather complex system whose detailed description lies
outside the scope of this document. We therefore focus on the core functionality of the
database and the data and functionality used in the context of the work described here.

B.1 Motivation and history

Back in 1996 members of the IBM Zurich Research Laboratory started to build-up a
repository of attacks. At this point it was difficult to get hold of attacks because they were not
generally disclosed to the public. Collecting information about newly discovered
vulnerabilities and attacks was however a must for the ongoing research efforts in the ID
research field. The team felt that a systematic and uniform description of the vulnerabilities
and attacks found was required to structure the collected data. This led to the introduction of
the so-called vulnerability description files.

B.2 Database structure

The design of the database has improved significantly over time. However, the core of VulDa
has remained the same. On the one hand VulDa contains a large repository of documents
collected from sources known to provide security relevant material e.g. mailing lists such as
Bugtraq [SecFoc], newsgroups, various web and ftp sites such as CERT, SecurityFocus
[SecFoc], SANS [SANS], NIAP [NIAP97], or the CSRC [CSRC] etc. On the other hand
vulnerability descriptions provide highly structured information about vulnerabilities and their
corresponding attacks.

The population of the database is automated to a high degree and is mostly achieved by
unattended batch processes that are gathering data, archiving data, converting data and
indexing data. However, the creation of the vulnerability descriptions cannot be automated
because their creation requires an in-depth understanding of computer security.

77

Malicious- and Accidental-Fault Tolerance for Internet Applications

Internet)
Automated Collection

- www
~ftp Raw Data - Web crawler
- mail - Mirroring

— news
- etc.

- News snarfer
- Mail archiver / HTML converter

P
O's& s
R 5
& 5
Filterin .
g Filesystem
- Isolat!on of vulnerabilities ~1.500.000 files
- Isolation of attacks (Mai 2001)
- Categorization
S
w
D
Q
o
>
TReferences g‘
Q
=]
oy . . CD
Vulnerability Description
Creation Vulnerability —
- Description
— Structured description Fil
- Classification les

Attack
Classification

Figure 33 — Data flow in VulDa

Figure 33 shows the data flow within VulDa. As mentioned, for the maintenance, control,
state tracking, indexing, and searching a series of processes implemented with tools such as
shell scripts, Perl, GDBM (GNU database manager), or MySQL [MySql] are used. The
database can be accessed from within IBM by means of a webserver that offers various ways
for searching the various categories of documents.

B.3 Vulnerability descriptions

As mentioned, the vulnerability descriptions represent a highly important part of the database.
The task of creating vulnerability descriptions requires that the author have a good
background in networking, computing systems, and security in general. The data is stored in
so-called vulnerability description files that are divided into sections. Those sections contain

78

Towards a Taxonomy of Intrusion Detection Systems and Attacks

attribute-value pairs that are used to express the various aspects of the vulnerability and attack
described.

As just indicated, VulDa’s vulnerability descriptions are well structured and clearly separate
vulnerabilities and attacks. Generally speaking one can state that VulDa’s vulnerability
descriptions represent a super-set of the information provided by other efforts established just
recently. Examples of similar efforts are ICAT [MBDRM] or the Bugtraq ID pursued by
SecurityFocus [SecFoc].

administrative information
Main title

abstract

keywords

CVE

Bugtraq ID
— external references

Vulnerability ‘ Qghusrg of fault
Characterization

Vulnerability
L Detection

Vulnerability
5 Removal

Vulnerability
Description File]

attacked object
Attack :
A attack interface
L| Characterization attack characteristics
exploitablity
T impact
Attack | ..
U Detection
1
OS / Software ngi%n
L| Hardware / Protocol status
T patch level
1
data category
Reference . search criteria

Figure 34 — Overview of the vulnerability description structure

In the following we briefly discuss the purpose of the various sections shown in Figure 34.
We only highlight the details believed to be of general interest or that are used within the
context of the overall work described here.

The main section of the vulnerability description files contains generic information about the
document. Besides information used for administrative purposes this section also contains the
document title, abstract, keywords, external references, and last but not least CVE identifiers
and Bugtraq IDs (see also Section 2.2.3.1).

In the section vulnerability characterization the vulnerability is classified according to
various criteria such as the cause of the fault e.g., design fault, implementation fault etc.
Further the vulnerability is classified according to commonly well known fault characteristics
such as insufficient input validation, privilege abuse etc. Among other criteria this section
also denotes the system component where the fault is located.

The vulnerability detection and vulnerability removal sections are not explained in detail here.
However, it is worth noting that the section describing the detection of the vulnerability also
includes information about testing tools e.g. a scanning tool and the way those tools would
report the vulnerability. The vulnerability removal section describes the various ways in
which the vulnerability can be removed e.g., disabling of a service, reconfiguration etc. It is

79

Malicious- and Accidental-Fault Tolerance for Internet Applications

permitted to include several of the sections just described within one vulnerability description
simply because there might be several different ways to detect a vulnerability or to remove a
vulnerability.

The attack characterization section characterizes one of the ways the previously described
vulnerability can be exploited i.e., the way the fault can be activated. Besides attributes that
describe the immediate impact of the attack, the exploitability (remote or local), prerequisites
etc., this section contains the information that was used to classify attacks. This information
formed the basis for the results presented in Section 3.4 and in Appendix A. As there is often
more than one way to exploit a given vulnerability, several attack characterization sections are
supported.

The attack detection section consists of properties which allow us to specify how one can
detect an attack using a given IDS. Because the vulnerability description may contain the
description of several attacks and because various existing IDSes may detect a given attack in
different ways, several attack detection sections are allowed.

The OS, software, hardware, and protocol sections have an almost identical structure. They
are used describe a specific version and patch-level of an OS, software, hardware, or protocol.
In addition these sections contain a status field that marks the described as being vulnerable or
safe. In this way it becomes possible to describe the difference in terms of version and patches
between vulnerable and safe versions of a product or protocol i.e., the vulnerable and safe
versions can be described very precisely. This also means that it is possible to describe the
fact that a given patch introduced the described vulnerability and that the installation of yet
another patch will remove the vulnerability again.

The reference sections are used to link the vulnerability description with further information
sources. It is possible to provide references to every document found in the database—
including other vulnerability descriptions, exploits, advisories, RFCs etc. It is important and
completely natural that information about a given vulnerability be discovered and published
gradually. It also seems obvious that the frequent updating of references in several hundreds
or thousands of vulnerability descriptions is not feasible in practice. This led us to a solution
that was proven to be very efficient from a maintenance standpoint and also from a usability
standpoint. Taking advantage of the fact that the documents in VulDa can be searched by
categories we included search patterns per category in the reference sections that are resolved
at runtime. This allows us to refer very efficiently and in an always up-to-date manner to a
whole series of subsequent documents e.g. a mailing list thread or a series of advisories.
Experience has shown that given that the search patterns were formulated carefully enough in
the first place, even over time the number of non-relevant document references generated can
be kept to an almost negligible minimum. To further extend the expressiveness of the
references generated it is possible to rank the generated references.

B.4 Results

Over the years the VulDa database has grown into a large repository of security relevant
documents separated by categories such as advisories, vulnerability descriptions, attacks,
tools etc. VulDa offers a flexible search facility that allows the searching of documents by
categories or the browsing of vulnerability descriptions by various criteria such as OS etc.
Using the same infrastructure, security tools such as a network security scanner were
integrated.

It should be noted that the technology used to implement this database was not the most
recent available. It was not the goal of this project to demonstrate what the most advanced
software products are able to do. Besides using public domain software such as Perl [Perl87]
we were pragmatically focusing our efforts on the concepts and the content of the database.

80

Towards a Taxonomy of Intrusion Detection Systems and Attacks

B.4.1 Attack classification

The classification of attacks described in vulnerability descriptions is the most visible result
achieved with respect to this work. The data obtained by this classification was used to
generate the results discussed in Section 3.4.

37 ¥ulDa - Attack Classification: Attack Characteristics x Attacked Object (Attack Interface) — ol x|
File Edt Wew Go Communicator Help

VULDA

@/ 1BM Gorporation

Attack Characteristics x Attacked Object (Attack
Interface)

execution [attr] [attr] [attr] [attr]
g bi-directional | uni-directional | within |object | object | object object insider,
Attack characteristics L P N " N - N input " repeated multiple
object read creation deletion modification traitor, "
relevant aclivity |sources
context trojan
ttacked object Attack interface | 52.0% (186} ‘ 6.1% (22) | 3? L% 37% | ‘ 2*'18“% ‘ 14.2% (51) ‘ 1?II 1.4% (4 | 10.9% | 0% (7]
..... = — = | L

I I
8% L1%(4)

Uﬁ/u

pp. layer (based on EI »
connectionless e 0.6% (2 2.5% (9 2
SEervicep

app. layer 4% 14% D}/n Dﬁ% 23%
(single- (ransamon) ﬁ% - 4% @l
app. layer 3% |2.5% | 0.8% 8%
(multi-transaction) ‘ Ly | 19 @ @ ‘

&%

app. Iayer

(multi-transaction, 3 3.6% |0 0.8% 5 3.9% 0.8%

multipe 0.8% (3} (1% o) 0.8% (3 R})

connections)

process BB o
(262} middleware 0.3% (1
. 1.4% = o 0.8% 0.8%
10 device & 0.8% (3 0.3l 5] (3
o o o

system call Al lans) | 0Esd ‘&ﬁ/“ %{“ 0.3% (1 4&55

- 2% | o SO PO aee e [25% 0.3% -
5y [=b=] |Dacument: Done R < = v

Figure 35 — Statistics of attack classification superposing attacked object, attack
interface and attack characteristics

Besides the statistics discussed in Section 3.4 we have produced a series of HTML tables
shown in Figure 35 and Figure 36 that support the evaluation of IDSes in a practical manner.
The tables not only provide an overview of the most frequent classes of attacks but they also
allow us to obtain the list of vulnerabilities belonging to a given class by clicking on the
corresponding table field. This functionality simplifies the task of describing activities that
belong to a given class and supports us in systematically identifying the activities to be used
for the IDS evaluation.

Figure 35 shows a table that combines the static activity characteristics discussed in Section
3.2 (rows of the table) and the dynamic activity characteristics discussed in Section 3.3.
Please note that every attack may qualify for several static and dynamic activity
characteristics. This means that vulnerability descriptions might qualify for several class
fields in the table—which is a completely valid situation.

81

Malicious- and Accidental-Fault Tolerance for Internet Applications

=1

s

- ¥ulDa - Attack Classification: Attack Characteristics - Correlation Matrix - Netscape -8 5[
Elle Edit Wiew Go Communicator Help
Attack Ch teristi C lation Matri 3
execution
o .| bi-directional |uni-directional | within |object | object | object | object [ttr] e ider, [t [attr]
ack characteristics R C - N - _ N inp p repeated multiple
object read creation deletion modification traitor, o
context relevant trojan activity sources
Attack characteristics 52.0% (186} ‘ 6.1% (22) | 3? B 3 ‘ 0% ‘ 28% ‘ 14.2% (51) ‘ TB 1.1% (45 ‘ 0.9% ‘ 0% (7]
bi-directional Z[l% 4 2% 2 8% 0. 8/0 U 3% 2 U%
um directionsl sm ‘ 4% (5) -‘ - ‘ - ‘ 31% ‘ 0.3%
executmn
ot 3:361% - L - i n% o j/n L . o 4%
context
labject read 37% 4% (15) 34% 14% Dﬁ% 349 (17 3.0% 14%
(4
14.0% 1.4% DB/n 2.0% Dﬁ% 14%
object creation 50) ‘ 2.8% 10y ‘ | 0% (7 E -‘ &) 5.0% (18 ‘ T
o 5 o
object deletion % 0.8% (3 ‘ ‘ 3% (1Y M M M 11% (4 ‘ Lty ‘ ‘
bject 14.2% 34/ U”/ 1 l“V 3.1% 3”/ 2"/
odication | 6 | 244012 ‘ 0.0% () |2 2% (8) |7 2 8 -‘ 2 8 2
[attr] input 491% 3 D% 2 U% 1.4% 4% 3 4% EI 6%
[attr] insider, ﬂ 0.6% 6% 1 l%
||ra|tur,lru|an ‘ 3% ‘ |ﬁ(—2 ‘ ‘ M ‘ ‘
att! ated 10.9% 4% | 14% 3.4% 1.4%
m S o (oolS ' malf EEE
[attr] multiple | 2.0% 2.0%(7) 6% 4% D%
sources [1% (N
Fault-assumptions: Attack characteristics - Attack characteristics
classified attachs: 358
wenerabion date. Sat May 12 071355 MOT 2001
(i3 == |Document: Done EE =

Figure 36 — Statistics of concurrent occurrences of attack characteristics

Figure 36 shows a different example of a table that is generated based on the classified
attacks. In this example one can find the various ways the dynamic activity characteristics i.e.,
attack characteristics in the figure, are combined within one attack. Please note that this table
reflects only combinations of two characteristics per field. This means that attack classes
combining three or more attack characteristics do not appear in this table.

B.4.2 Vulnerability browser

The vulnerability browser—also called vulnerability overview—provides a browser-stylish
interface that enables a user to search for categories of vulnerabilities and attacks easily. The
interface is implemented based on the mentioned search engine. As shown in Figure 37 and

Figure 38, the user may choose a category of vulnerability descriptions in the left column of
the browser window and have them displayed in the main portion of the browser window.

82

& ==

Eile Edit

erview -

Wiew Go Communicator

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Netscape

=181 x|

Help

Vulnerability
Overview

Help

Expand all categories
Collapse all categories
Without frames

¥ QOperating System

All

3com0s

ASUK

AlX

Amiga0s

Ascend embedded 0S5
BayOs

BeOS

BsSD O

BsDI

COLTSOHO
Conectiva Linux
ConvexQS5

CYGNUS

Debian Linux

DGR

Digital Unix

Fabric 05

FreeBSD

Harris CyberGuard CH/SK

VULDA

& 1BM Corporation

Vulnerabilities related to AIX j
1. = Format string bug in AT fip client

by Troy Bollinger <trap@ceustin.ibm corm= (first occurence: July 21, 2000, last modification: March 8, 20013
The ALY fip client is suscaptible to @ formet bug in its guote subcoramemd This valnerability allows local users to execute
arbitrary code as root.

2. e BIND TSIG Vulnerability
by Trop Bollinger <trap@austin.ibm corn> (first occurence: January 29, 2001, last modification: February 16, 2001)
Severad vulnerabilities have been discovered in implementations of the DNS protocol based on JSC's BIND in versions
Frior to & 2.3, The most serious of these vulnerabilities is @ buffer overflow in the processing of the transaction signatures
(T57G)

3. @ Format string bug in ATY getty
by Trop Bollinger <trap@austin.ibm cor= (first occurence: September 14, 2000, last modification: January 8, 2001
The ALY getiy cornracmd is susceptible to a format bug in its error handling routine. This vulnerability allows local users
0 execute arbitrary code as roor.

4. e Telnet ctrl-d denial of service attack
by Andreas Tschamer <omt@zwrich ibm com= (first occurence: February 11, 1993, last modification: November 30,
20003
A denial of service exploit causes all tty activity to hang on the spstem being attacked. This allows remote users fo cause
the vaachine to stop accepting new telnet sessions. This explolt has been made publicly available on the Bugtray mailing
iist.

%, e Buffer overflows in NLS environment variables
by Andreas Tschamer <emti@zurich ibm cor= (first occurence: February 13, 1997, last modification: November 22,
2000
The fefIS (Pitural Lemgucge Service) is the component of UNVEIY spstems that provides frcilities for customizing the
negurad lemguage formaiting jor the spstem. Excenples of the trpes of characteristics that com be set ave ..

Harris NightHawk C/SX =] 6. @ Buffer overflow in Oracle emetl =
[Keyword Search | Hew Yulnerabilities | Vulnerability Search | Yulnerability Overview | Attack Classification | Mailing Lists |
[Home | YulDa Hews | Pagsword | Contact | Legal - Info | Subseription]
£ ACR Fuariak 108 Dnnnaen b Zusmink IDLA Comssribs amd i : -
[Dacument: Dane O 22 = 2

Figure 37 —

Vulnerability browser—example with the operating system AIX

Figure 37 shows an example that lists all vulnerabilities known to affect IBM’s AIX operating
system.

YulDa - Yulnerability Overview - Netscape
File Edit

.

.

View Go Communicator

=B =

Help

Overview

Help

Expand all categories
Collapse all categories
Without frames

¥ Operating System

¥ Software

¥ Hardware

} Protocol

» Category

¥ Attack Characteristics

¥ Attacked Object

VULDA

= {BM Corporation

=

Vulnerabilities related to ao.proc

1. Buffer overflow in TIS5 ISAPI printer extension
by Trap Bollingey <trop@austin it cor= (first occurence: May 01, 2001, last modification: May 04, 2001)
From the Micvosoft security advisory: A security vulnerability vesults because the ISAPT extension contaims am unchecked
bugffer in @ section of code that hemdies input parareters. This could enable a vemote attacker to conduct a buffer overrun
attack ..

2. Unusual MIME Types Cause IE to Execute Attachments
by Craig Billado <hilladoc@us.ibrm corn> (first occurence: March 29, 2001, last odification: May 01, 2001)
The Microsaft Internet Explover, versions 5.5 emd 5.0, can be made 1o execute ernail attachments without waming. The
execution is triggered by entering one of several “unusual” type vatues the in MIME headey. IE responds to these fypes by
launching ..

3. Vulnerability in Lucent/Orinoco Closed Network for 802.11b
by Michae! Welter <walteryi @us. v corn=> (first occurence: April 2, 2001, last modification: April 20, 2001
A vulnerability exists in the Lucent/Qrinoco proprietary access control mecheanisy, Closed Mexworl, for wireless networks.
The Closed Metworlr allows anpone who lmows the network name, called the 58T to join the networl. The viinerabiilly
Isthat the ...

4. Tivoli Spider HTTP daemon allows remote command execution

« CPU by Trop Bollinger <trop@custin ibm com= (first occurence: March 15, 2001, last modification: April 16, 2001)
» /0 device 1 The Tivoli Spider HTTF daeron may contain valnerabilities. Under certoin civcumstances Spider will allow on aftacker
* memary to issue remote coramands 1o the host. Apply Tivoli patch # 3.7, 1- TMF-0004 (if its not posted, contact Fivoli Customer
* storage Suppart EO0-848-
: gﬁv{::zm ghject 5. Remote buffer overflow in NTP daemon
* networking stack by Trop Bollingey <trop@austin i cor= (first occurence: April 4, 2001, last modification: April 6, 2001}
+ 0F core The network time protocol daemon (ripd or xaipd) is vuinerable to a remote buffer overflow. Since nipd usudllp runs as
+ 03 module ¢ driver root, this may allow the attacker fo take full control of the machine. Although the nipd configuration file allows
* process vestrictions ...
= £ Tinv ntraceleveeve race candifion =
[Keyword Search | Hew Yulnerabilities | Yulnerability Search | Vulnerahllltv Overview | Attack Classification | Mailing Lists |
[Home | YulDa-Hews | Password | Contact | Legal n]
13 [=p=| |Document: Dane EE

Figure 38 —

Vulnerability browser—example with the attacked object process

83

Malicious- and Accidental-Fault Tolerance for Internet Applications

Figure 38 shows an example that lists all vulnerabilities where it is known that the
corresponding attacks are affecting processes. This example makes use of the classification
made for the validation of the activity assumptions developed within the context of this work.

B.4.3 Integration with security software

The flexibility of the vulnerability description files and the search engine used on VulDa
enabled us to integrate security software such as network security scanner with the database.
In the example mentioned, the security auditing tool would generate an HTML report
containing links that indirectly refer to vulnerability descriptions on VulDa. A link may for
example contain a reference to a tool specific vulnerability identifier or to a vulnerability
identifier such as CVE numbers or Bugtraq IDs. By clicking on the link VulDa returns the list
vulnerabilities matching the search criteria specified by any of the mentioned ID types.

84

¢8

*ATUO YI0MJDU Y} UO IO 3S07 B uo suonerado 300[qo Surrojiuow 9q Aew
JIOSUQS 9y} 9SNeIaq I9YIell SOOP QOUISHIP SIY} dA10adsiod JOSUds S UB WOIJ SUOHN[OS dIeMI[PPIW Jo suorejudwo[duwr SuLIopISuod uaym ‘I9A0MOH VIO 'S0 pareoo]
ST J1 QIOUM JNOQE 21D JOU S0P PUk 03[0 QIEMI[PPIW & 0} SIOJAX A[[Ensn dUQ 'ISIXd JOU Op UAJFO §103(q0 dIBMI[PPIW ISOY PUE SI0MIAU MITA Jo jutod [emdoouod e worq |,

"SWRISAS XIU[) U0 SUOP SE 109[q0 WdISASI[ly & 0} payuI] $102[Q0 D] YIM PIsnJuod aq Jou St sIyJ, .

(97 91qe L os[e 33s) §393[qQ — SINSLINIRILYD 10SUIS SO — S¥ Aqe.L

"s||eo uopouny 0}

Ajdde jou saop Jlaquinu
Ajjelauab sy} ‘weiboud e jo |jeubis ‘6o ‘q| lesn
JaABMOH (| ue aoue)sul Buluung @l enbiun swos ‘apoul Xiun xiun s dwex3y
Aq paynuap! aq auy} sayuap! dl yslqo al1slqo| g| eoinep enbiun| Aq paynuspiaq| “B'e seynuapl ‘ql desn
V/N | Ueo s|jeo waysAg v/N| @l sseooud sy aIema|ppIN aIema|ppIN e sajous| Aew sjoalgo Od| 9|1} e sajoUdp ay} sejouaq al
(seueuq
‘aweu anbiun e a|gepeo| "UAp)
Aq pannuapl aq S771Q SMOPUIA ssao0ud ", Homisu
Kew Aoy Ansibal Jo sa|npow ay} a)ealo "1s0y 8y} uo By} wouy ‘oweu [eubis ‘aweus)ly
10 9|qeleA aweu e Aq| xnuiq 62 sweu 0} pasn sem |109[qo aiem|ppiw | }03[qo atem|ppiw “Bo oweu pue yied| -o}@ sweu |eal
JUBWIUOIIAUS | payjuapl 8q ued| e Ag payiuspl| 1ey) a|geinosxa e JO sweu ay} e JO sweu ay) ‘aweu anbiun swos| ‘B9 109[qo ue| ‘eweu uibo| 6o
ue ““6s j08[qo S||eo uonouny| 8q UBD SIBALP ay) Jo sweu| Jayyeb oy a|qe si| Joyieb o} a|ge s 80Inep anbiun| Aqg payiuspl 8q| Jo sweu anbiun| Jssn e jo sweu
JUBWIUOIIAUD Uy pue waisAg| Jo sainpow SO ay) sejous| Josuas gl ayl| Josusas sql 8yl e sajouaq| Aew sjoalgo Od| ay} sajouag ay} sajouaq aweN
alema|ppiw alema|ppiw yo9lqo sajnquye
juawuouiAug s|ieo a|npow SO ssaoold JSOH NIOM}ON a91naQ adl wajsAsali4 19sM) | / adoos AyAnoy

$3d0ds A31AdE 03 393dsax YIIM SINSLIdIBIRYD S JO sojdwexy

SYOBNY PUE SWIISAS UOII)d(] UOISILIU] JO AWOUOXE], B SPIBMO],

SINSLId)IRIRYD A0SUIS SAI I°D

‘Te1ouad ur (I pue soS[JO UONEN[BAd
oy} 10J 9[qBINS JSOW SWAAS JBY} QU0 J} JUIWNOOP PUB 9S00 A[[eIoUdT om Sosed yons uJ '9[qIssod wods uone)oIdiojur SNUeUIds [BIOADS SISED dUWOS U]

ydei13 adoos £11a1308 939[dwI0d Y} JOA0D 03 JUBSW UBIW OU AQ 210JI}
o1e so[qe) Suimol[oy oy, ‘poreadidur are sadoos Ajanoe pue sanquye jo sied oy Aem oy) jensny[r 0} USAIS o1 SUIMO[[oJ a3 ur papraoid sojdurexe oy,

1) xipudddy

98

(67 21qEL 0S[E 393s) 3sanbay—sonsLidoRIRyYd 10sUds ST — 8 el

1senbau
oyoa dN9| b8 1senbau [000301d By} JO JBIUSPI BY | ‘apeuw 1sanbal Jo adA} ay} Jo Jayuapl ay ‘apeuw ||ed ay} JO Jaliuap! 8y | al
1senbal
V/N| dLlH ue jo aweu ay} ‘60 apew jsenbai ay} jo sweu ay| ‘apeuw ||ed WajsAs Jo uoiouNy 8y} Jo dweu ay | aweN
s9nquye
19Ae| Jodsuel Jafe| uoneolddy 11eo | / adoas Ajanoy
(8T dIqe L OS[® 99S) SHUIWNSIY—SISLIdJIRILYD I0SUdS S(AI — L 9B L
‘Juswale)s }sanbal 41 | H 9y} mMoJ|04 }eu) sp|aly Japeay 41 1 H a3 aJe sajdwexa |eaidA |
‘sisA|eue Jayuny 1o} |ge|ieAe ale syuaswnbie }sanbal pajeloosse Ajasoo) Ajgissod jeuondo V/N suondo
‘1senbal
d1l1H ue jo 14N 8y} “Ba a|qe|ieae aie jsanbal e yym pajeldosse Ajoalip sjuswnbie ay | ‘sisA|eue Joj a|gejlene ale ||eod e 0} papiroid sjuswnbie ay | oiseg
s9nquye
JaKe| uoneo)ddy 11eo | / adoas Ajanoy
(LZ d1qe L 0S[® 99S) sanqLie 393[qO—SasLId)deIRYd J0SUdS S — 9% dIqe.L

'|oJ}u0d SS920E

paseq-a|0J Ul 9]0J S Jasnh e djouap 0} pasn

"0}0 s8oINap 9bkel0)s ‘saoInap aq AeJy "Josn SAljeJiSIujWpe Ue S| Jasn ay}
0/1 Jo sadA} snouen ay) sejenualayliq sadAj 10alqo Dd| ysinbunsig *0}8 S9110}08.IP ‘SHUI| ‘Sa)l SaleuaIaYId | 1eU} JoB) By} 68 Jasn e Jo 8|0J By} SajedIpu| adA |
s9nquye
ERIVET | adl yo0lqo wayshAsaliy J9s) | / adoas Auanoy

suoneor[ddy JouIoiu] J0J 9OUBID[O], JNE,{-[BIUIPIOOY PUB -SNOIOI[BIA

L8

(1€ S1qEL 0S[E 993S) B)e—SISLIdIRIRYD 10SUdS ST — 0S dlqeL

8y} sepn[oul Iy "eiep snjejs palspisuoo
2 ued 901A8p abeIo]S B JO Jo Alowaw
[eaisAyd Jo JUBU0D BY) IXSJUOD BDIASP BY} U]

"sloysiBal 92IABD JO SNje)s

'ssa00ud ay) jo abewi Alowaw ay} se
ua9s 8 Ued ssao0.d e Jo ejep shjejs ay |

‘8|1 & J0 Jusjuoo 8y} “Be 108[qo
wiaysAsall} e JO JUsUoD By} sjussaidal eyep
snje}s sy} 8doos AjAnoe wajshsaelly ayy uj

ejep snjejs

‘S|qejleAe jou aJe sNAd 401

‘JSOY 8y} UO uolew.ojul s)i S]09||00 JoSuas
Sy} JI puey JSYjo 8y} UQ "weals 401
pajquiasseal ay} ‘@Aal|aq p|nod auo se ‘Jou
pue—Ajuo sNAd dO.L sepiroid)i yiomiau

By} Wolj ejep s)l $}09]|00 Josuss ayj J| VIN V/N V/N ejep ndd
‘wealls 40] e uo paseq buneisado
8q 0} S| 9y} JopIsuod ued auo sjuiod
pUS UOI}OBUUOD BY} JO SUO WO} E}ep Wweal}s
dD1 8y} sulelqo Josuas gl 8yl J| “weans
ejep ay} asjuesenb o0 a|ge jou Ajjesouab
SI Sl 8y} 1omiau ey} uo syexoed 4oL
$]09||02 JOosSuas S| 9y} §| "99IAI8S Weal)s weals
Ejep |euonoalip-igq djgeljad e sapiaoid 4oL VIN VIN VIN -umop /-dn
sajnquye
dol aolnaQ sS9201d 109[qo waysAsa|i4 | / adooas Auanoy
(0€ dIqB L OS[E 33S) e)eP [0.1)U0I [090)0.1J—SISLIIIRIRYD JI0SUIS S — 6+ 2IqBL
‘siejoweled uoposuuod sjenobau *0}8 BulNoJ 92IN0OS IO} SP[Bl} UM UOHBWIOUI Jopesy
0} spjal Jepeay |euondo asn 4O SE Yyons sj020j0id ay) puajxa 0} Ajqissod 8y} Jao d| SE yons s|020}0id V/N suondp
‘INdVYNVI] siequinu 1od umouyj-jj|om YNV ‘SNQ Ul paiois aweu
8y} Aq pajsi| Se Yyons 99IAI8S B U}IM PaJeIDOSSE 9 USHO UBD | Sk sweu)soy 69 wa)sAs e Jo SWEU }IOM}BU Sy} Sajousp uorjeul}sap
alWeu uoeulsap / 82IN0S 8y} }Xajuod Jake| podsuely ay) uj | Uonieul}Sap / 821N0S 8y} }X8}U0 JaAe| }Jomiau ay} u| V/N / @2inog

Jaquinu Wod 491 69 ssalppe
uolnjeunsap / 82Inos JaAe| uodsuel) ay) sajouap Ajjelouab

‘ssaippe d| 69
UONBUN}SOp / JOpUSSs 8y} JO SSAIPPE }JOM]}OU SU}) S9jousp

"uoneunsap / Jopuas NAdd 8u} Jo ssalppe JYIN Sy} sejousp

al uoyeuysap

@l uoneunsap / 82IN0s 8y} 1X83U00 Jake| Lodsuel) ay) uj @l uoneulIsap / 80IN0S By} IXBJU0D Jake| ylomjau 8y u| d| uoneulsap / 80IN0S 8y} IXBJU0D Jake| DI dU} U] / @9inog
sajnquye
19Ae| Jodsuel 19Ae| lom)aN 19he] 9y | / @doos Ajanoy

SYOBNY PUE SWIISAS UOII)d(] UOISILIU] JO AWOUOXE], B SPIBMO],

88

(€€ SIqEL 0S[E 33S) UOIEZI[BULIOU B)BP—SINISLIAILILYD UISUI (] — IS d[qeL

‘passaidwiod
aq Aew sajl} JoO JUSUOD BY |

VIN

‘papooud
y98seq Ua)o ale ‘sjuswyoeye
ay} Alienoiued ‘sebessaw i

VIN

"$9OSE(q Ul POPOOUD
usyo sl elep 1S0d d11H Ui

Buipooap ejeq

‘Aem [ensnun ue ui pajonb

€020

-6661-3IAD “oene adid snoweju
ay) “6°a ejep yoepe buiuiejuoo
sBuLls Yyym auop ag os|e Ued siy}
Aj@reunyojun 038 sajonb Buippe

'd1l1lH 0} Jejiwuis
SyoEje JO UOIBISNIqo 8y} O}

"'SAeM Jualayip snoueA

ut 74N ue jo uoiod jsoy sy}
Jussaidal 0} a|qissod os|e s1}| "Sdl
Ue WoJ} Yoeje ay} a1eosniqo 0}
a|ge aqg Aew JI Inq ‘passadoe Bulag
1duos Jo juswnoop ay} abueyo jou
soop aouanbas adeoss ue yong

‘sAem snolea aqg Aew [|eo uonouny Jo walsAs | Aq sAem pajeosnyqo pajedldwod ul | aigndaosns ale saweua|l BuiajoAul | “(sajonb 1noyym) 7/, sI sTHN d11H uoinjosal

ul padeosas aq Aew saweusd)|iq e 0} passed sjuswnbie syl | uspuUm aq Aew sassalppe |lew-3 |020j04d Jayjo Auew pue 414 | ul pasn aouanbas adeoss |eoidA) v Buiyg
Buipooap

STYN Ul Sepod Jajoeleyd

VIN VIN VIN V/N| pJepuejs INN @snh 0} d|qissod s|)| ahg-BInN

‘uonejuasaidal jewoapexay Buipooap

J1I9Y} UM THN BY} Ul Siejoeieyd Jajoeleyd

VIN VIN VIN VIN apoousd 0} 8|qissod sI } d1LH Ul 9)Ag-9)buig

sajnquye

109[qo wayshsajy slleg d1INS dld dl1H|/?3doas AjiAnoy

SANSLIdIBIRYD 3uIssdd0.ad-dad vyep duisud (qp 7D

suoneorddy jouIoju] J0J 90URIO[0], J[NE,J-[EIUIPIOOY PUE -SNOIOI[BIA

68

sisA[eut jaed ddue)sul I[SUIS — 7S d[qeL

‘abuel

‘pazjubooal anjen |njbuluesw e ulyym aq o} paljlIdA ale
‘Jed aouejsul ay) o adueldwod Adljod ayy ale sp|al} Jopeay JO SaI0UdISISUOdUl JO sjuaswnbie ay} 68 pijeA aq 0} pallLIaA ale uoljesilIaA
pue Ayjiqisned ayy seyiaa suibus Q| 8yl | ‘suoneuiquod anjea ‘sanjea s|qejdasoeun V/N | Sl|ea uonouny pue wajsAs jo sjuswnbie ay| onuewas
‘uoneoyoads ‘(sadA} eyep Buipnjoul)
[00030.d 8y} 0} 109dsal YUIm paljLIan | "palliaA si juswbas uooauuod Jo juswbely 100109 AjjeanoejuAs aq 0} palioA ale uoljesllLIdA
sl }sanbal |0o0j0ud 8y} Jo XejuAs 8y | NAd o'! Hed aduejsul 8y} JO 8iNjoNAS YL V/N | Sl|eo uonouny pue wajsAs jo sjuswnbie sy o160
“Jayjo

‘syjuawale)s 018 d14
‘d1INS ¢B°e Juswaie)s [090j0id Jo 8ouanbas
j000j0.d B Aji3uapl 0} 8|qe si auibus | 8yl

‘paziubooal si
j0903j01d 8y} jo adA} ayy o'l paziubooal ale
sjuswbely NAd pue suawbas uonosuuo)

yoea 0} s|[e0 wajsAs ajejal o) sishjeue
ss@004d Jo 9a160p swos spasu auibus q|
ay) a1aym ‘sishjeue aousnbas ||eo waysAs
UHM uoneuiquiod uj palinbal aidwexa 1o} S|
sassao0.d Joy sisAleue ped aouejsul oiseg
‘AioBaieo siy} ojul sjje} os|e siy} Ajuo peaiyy
a)buis e Jo s]sISu09d ssao04d e} "ssadoid e
4O peauyy e Ayyuspl o} 8|ge si sulbue | 8yL

"s||eo eziubooal 0} a|qe si sulbus Q| 8yl

sisAjeue oiseg

19Ae| uoneosijddy

J19Ke| yui| / Jaomiau ; podsuel |

$8820.d

e

sajnquye
| @doas AyAnoy

SYOBNY PUE SWIISAS UOII)d(] UOISILIU] JO AWOUOXE], B SPIBMO],

S[9A9] SISATeu® ddueIsU] [°€*)

SOIISLIdJIRIRYD SISA[EUR dUR)ISUI JUISUd (] €D

06

sisA[eur dnoag dduejsuy — S d[qe L,

's@ouanbas Jo Ajjigeideosoe ay} AjlieA 0} pue

J1asn e Aq

Kouspuadap siy} Jo Aous}sisuod AyuaA 0} a|ge si auibus Q| 10 ssa00.d e AgQ opew s|ed jo souanbas e Aq psjussaidal uoI3ed1IdA
ay ‘dnoub e jo seouejsul ay) Buowe Aouspuadasp si aiayj § V/N yse) e jo ANjigeidacoe ayy AjeA o} ajge si suibus q| 8yl onuewWaS
‘Ajuspuadapul UOISSaS B UIY}IM PajNdaxe SUOoesUEl) "Josn e Ag Jo ssao0ud e Ag apew s|jeo Jo aousnbas uoIjesl1IaA

"9'1 seoue)sul 8y} azA|eue 0} a|ge si suibus q| 8yl V/N| e Jo ssaujoe.ioo [eo1Bo| a8y AjuoA 0} a|ge si suibus q| 8yl o160

¥o9yo onsijdwis Jayjo Aue 1o Jaquinu

Hod umousj-||lom B uo paseq pazijeas 8q Aew siy] 0}
TOSAN ‘zaa ‘eoel0 ‘'d1INS ‘dLLH “B'e uolisses |0o0j0.d
Jake| uoneoldde ue azjubooal 0} 9|qe s suibua Q| ayL

dnoib ssao0ud e Ajpuapl 0} s|ge si suibua q| ayL

‘sishjeue
ss9004d Jo 9ai60p swos alinbai Ajjeuonippe Aew siy| “Josn
e 0} 1o ssa00.d e 0] s||ed 9)eI00SSe 0] 9|ge s aulbus q| 8yl

sisAjeue oiseg

s9nquye
19Ae| uonesijddy S$S99%0.1d l1eo | / @doas Ajanoy
SIsA[eu® ddue)sul I[3UIS — €S qBL
‘uonez|ueblo ay} Jo apIsino
JBAI9D8I B 0} JUSS S| JUSWNIOP |elJUSPLUOD ‘paziubooal osfe
e Jey} Joe} ay} azjubooa. o} auibus aJe ejep awes ay} uiejuod Jabuo| ou jey;
@l 9y} oadxa pjnom auo 41 INS Jo @sed | sawbely Buiddepsano Jo suoissiwsuel)al ‘sjuswnbie
8y} U] "pajeanal Sem Juswinoop pajosjold juswbas uopodsuuo) “paziubooal]1eS 8y} o} Joadsal yym a|qejdasoe
e Jey} 1oe} ayj Ajjuapi 0} s|ge aq 0} suibus aJe sjuswbely buiddeanQ ‘paziubooas aq 0} sanjeA uinjas sy Ajluan 0y “Ba |ed e jo uolesllIdA
al 9y} s}oadxa auo 41 1 H Jo @seo ayj uj| aie sped 1991109 Aj[eo160| Ing Jus)sISuUodU| V/N | 10edwi ay) azAjeue o} a|ge s| aulbus q| ayL onuewas
[86%0NID]
Buluueas 491 yyeals ‘6-0 saouanbas
|0903j01d snooidsns aziubooal 0} 9|qe SI
auibua Q| 8y} Joyun4 "uonesyoads j0o0jold
9ouanbas |090j0ud 8y} JO SSBUDB1I0D ay) Buimojjoy Aq sued syl wouy douUe)sul uoljesiIIdA
ayy Ajl1an o} a|qe si suibus g 8yl sy} @sodwodal 0} 8|ge s| auibus | YL VIN VIN o160
‘sjuswbas Jo syuswbeuy
10 Buniapioal 6 8 uonesiian |eaIbo)
Aue Jnoyym soue)sUl B4} JO UOONIISU0DSI
onsidwis AioA B se uass aq ued
SIy] ‘NAd e 4o uondsuuod e o} buibuojaq
‘uonoesuel) B o'l sjuswsale)s [020j0.d sjuswBeuy Jo syuswbas ayy Ajyuspi ‘speaJy})l pue
jo dnoub e Ayuapl 0} 9|qe si suibus q| 8yl Alsnonuiuod 0y a|qe s auibus | 8yl | ssao0id e Ayyuapl 0} d|qe si suibus | 8yl V/N| sisAjeue oiseg
s9nquye
19Ae| uoneoiddy 19Ae| yiomjau Jodsues) sso%0.d 11eD | / edoas AnAnoy

suoneor[ddy JouIoiu] J0J 9OUBID[O], JNE,{-[BIUIPIOOY PUB -SNOIOI[BIA

16

sisA[eue dnoag jaed ddue)sul [BUONIAIIP-IF — 9G d[qEL

"Jusl[o 8y} Aq juss jsenbal "Buiyoeliy uonosuuod 491 4o Jdwspe ay) 1o8)ep 0} |ge Si UoI3ed1IdA

ay 0} J0adsal yym a|qejdacoe s| asuodsal s JaAlas au) ey} AjllaA o} ajge si aulbus Q| 8y | suibus Q| ay) “6'e paAIasqo souejsul [euoijoalip-iq 8y} Jo AJjigeideooe ayy AjlisA 0} 8|ge S| onuewWaS
"Jualjo 8y Aq juas jsanbal sy} 0} }0adsal yum asuodsal ‘uoniuyap j0o0jo.d 8y} 0} 10adsal uoljesllIaA

JBAIBS B} JO SSBUI08.1I00 [eonorjuAs “Be |eo1B0| 8y AjUaA 0} B|ge S| sulBus | YL | UM JUs)SISUOD aJe Suoioalip Yiog ul Buimols snad eyl 1eys Asea o} ajge si auibus Q| 8yl o160

-asuodsal JaAIas ay) Ajyuapl 0} 9|ge si auibua q| syl

‘suonoalIp Yjog ul Buimol snad eleloosse o} ajge st suibus | ayL

sisAjeue oiseg

sejnquye
19Ae| uoneoiddy 19fe| yul| / }Jomjau / odsuel} pajualio uoidduU0) | / 9doas AjAOY
sIsA[eue (QuUE)SUl-I[NU) UB)ISUI-SS0.1)) — §S d[qE L

‘s@ousnbaes Jo Ayigeldecoe ayy ‘(sesseo0ud Juspuadapul |elanss Agq epew
Ajuan 0y pue Aouspuadap siy} Jo AOUB)SISUOD AJlIBA 0} 8|ge 'S@ouUe)suUl Jo | aq Aew s|[eo ay}) S|B9 Jo aouanbas e jo Ajjigeidasoe pue UOIJeIIIIdA
s1 auibua | 8y} ‘seoue)sul Buowe Aouspuadap sl aiay) §| | seouanbaes s|qeydacoeun Ajuapl 0} s|qe si suibus Q| 8yl SS9U}09.100 OljUBWSS 8y} AJLIaA 0) 8|ge S| aulbus | 8yl onuewas
uoljesOlLIdA
VIN VIN VIN o160
V/N VIN V/N| sisAjeue oiseg
sajnquye
19ke| uoneoiddy 19Kke| yuiy 7 yaompau 7 yodsues | |le | | edoas Aoy

SYOBNY PUE SWIISAS UOII)d(] UOISILIU] JO AWOUOXE], B SPIBMO],

6

suoneor[ddy JouIoiu] J0J 9OUBID[O], JNE,{-[BIUIPIOOY PUB -SNOIOI[BIA

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Tables

Table 1 — Networking related activity scopes—physical layer.........cccceeveveerciieiviieniieeieee, 24
Table 2 — Networking related activity scopes—link layercccovvvevieviieniencieeieereeieeieeenn 25
Table 3 — Networking related activity scopes—network 1ayercccevveevierciencieecreesieeneenen, 25
Table 4 — Networking related activity scopes—transport layerccecceeveevieniencieecieenieennen. 25
Table 5 — Networking related activity scopes-middlewarecccvvevveriencieecreeneenreenieenn. 26
Table 6 — Networking related activity scopes—application layer.........ccocceeeeevcieecreesieereennenen. 26
Table 7 — Host related activity SCOPES—AEVICESiervieruieriieriiieieeieeieerieesieesiee et eee s 26
Table 8 — Host related activity SCOPES—{IIMWALEcc.cevvieecuiieiiieiiee e eree e eiveeevee s 27
Table 9 — Host related activity SCOPES—OS COTC....uviruririirriirieieeieestiertesereseresereeereeseeseessens 27
Table 10 — Host related activity scopes—OS modulescceeveeiieiienieniienienieeeeeeieeenn 27
Table 11 — Host related activity SCOPes—CallS........ocovuiiiiiieiiiiiiieiie e 27
Table 12 — Host related activity scopes—filesystem ODJECtSc.vevveereereeeieeeeereereereeieeenn 28
Table 13 — Host related activity SCOPES—IPC.......cccoevieeiieciieiieiieieee e 28
Table 14 — Host related activity scopes—middlewarecccocceevieniininniienieeneeeeseese e, 28
Table 15 — Host related activity SCOPES—CNVIIONMENLcccveerrreerireerreeeieeesireesreeeereeneneas 28
Table 16 — Host related actiVity SCOPES—PIOCESSccvveveerirerererrerieerseesseesseessresssesseesseesseessees 29
Table 17 — Networking related functional activity scopes—MAC layercccccevcevriereeennen. 31
Table 18 — Networking related functional activity scopes—network layercccceeeuveeneen. 32
Table 19 — Networking related functional activity scopes — transport layercceeveeeee. 32
Table 20 — Networking related functional activity scopes—application layer......................... 33
Table 21 — Host related functional activity SCOPes—environment............ccceeevveevvveerveesveeennenn 33
Table 22 — Host related functional activity sCOpes—IPC........c.ccccevvievieriieniienie e, 33
Table 23 — Host related functional activity scopes—filesystem object........c..cccvevvveriervenenennen. 33
Table 24 — Activity scope independent Sensor attributesccceceeerveereerienienienieeee e 47
Table 25 — Activity scope independent sensor attributes—Information source types 49
Table 26 — Activity scope dependent sensor attributes—0bject.........cccvevvereercvercreecreerieerieeneen. 50
Table 27 — Activity scope dependent sensor attributes—object attributes.............cocceeveerueennen. 50
Table 28 — Activity scope dependent sensor attributes—arguments............cccceeevvveerveenreennnnenn 50
Table 29 — Activity scope dependent sensor attributeS—TequUESt........cvevverierreecreecreereerreenens 51
Table 30 — Activity scope dependent sensor attributes—protocol control data......................... 51
Table 31 — Activity scope dependent sensor attributes—data...........ccceeveevierienieesieeseeneennen. 52
Table 32 — Activity scope independent ID engine attributes............ccvevreereereerverrenreesreenens 53
Table 33 — Data pre-processing ID engine attributes—data normalizationcc.cceeeueenee. 55
Table 34 — Data pre-processing ID engine attributes—filteringccocceeeeerviveiieneenceneenen. 55

93

Malicious- and Accidental-Fault Tolerance for Internet Applications

Table 35 — Instance and instance part analysis levels — basic analysisccccccceevververerennnn. 58
Table 36 — Instance and instance part analysis levels—logic verificationcccceeverueennen. 59
Table 37 — Instance and instance part analysis levels—semantic verification.......................... 60
Table 38 — Instance and instance part timing analysis attributes..........c.cceeveereereeneesvennenenn. 61
Table 39 — Instance and instance part information item analysis attributes............cc.cceeeueeee. 61
Table 40 — Instance and instance part sequence analysis attributesccecververeereeneennen. 62
Table 41 — Statistical instance and instance part analysis—comparison............cccceeeveeevveennnen. 63
Table 42 — Statistical instance and instance part analysis—timeframe.............ccccceevvvervenenennnn. 63
Table 43 — Statistical instance and instance part analysis—history accumulation.................... 63
Table 44 — Statistical instance and instance part analysis—unit..........c.ccccoeeevveeriiercieeecreeennenn 63
Table 45 — IDS sensor characteristics — Objects (see also Table 26)ccceevvvevrvevreereenneennen. 85
Table 46 — IDS sensor characteristics—Object attributes (see also Table 27).........cccccveueeneen. 86
Table 47 — IDS sensor characteristics—Arguments (see also Table 28).........cccceccvevvervenennen. 86
Table 48 — IDS sensor characteristics—Request (see also Table 29)ccccevvevieviercrennennnn. 86
Table 49 — IDS sensor characteristics—Protocol control data (see also Table 30)................... 87
Table 50 — IDS sensor characteristics—Data (see also Table 31).......cccceeeieiiiiiiieciieeiieene. 87
Table 51 — ID engine characteristics—data normalization (see also Table 33)cc.e....... 88
Table 52 — Single INStance Part ANALYSIS.......c..cvverierierirercrierieriesieesreeseeseesreesreereesseesseessees 89
Table 53 — Single INStance analySiS........cccueeeuirriieriierierierie ettt et e e eeeeeeas 90
Table 54 — INStance Zroup aNalYSISccccueercuieeriieeiiieeitieerieeereeeteeesteesreeeteeeseseesseeeseeessseens 90
Table 55 — Cross-instance (Multi-instance) analysiscceevverreereereerieesiescreereereereesseessees 91
Table 56 — Bi-directional instance part group analysisc.cccceevvververieeriieniieeseeseeseesnenenes 91

94

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Figures

Figure 1 — Low level SECUITtY POLICY ...cciuviiiiieeiieeciie ettt ettt ettt e ve e et eseveeeaae e 6
Figure 2 — System with a structured SeCUrity POLICYc.ccovvevvierierieiieiiiere e 6
Figure 3 — ACtivities VS. SECUTILY POLICY .ouvvevvirriierieeiieiieie et eiee et sre e teeseeesaee e snre e 8
Figure 4 — The generalized composite failure model of MAFTIA........cccoccieiiiniinieniecieee, 9
Figure 5 — IDS taxonomy by Debar €t al.........ccceeeviivriiriiriiiiiiiiecie e 11
Figure 6 — Revised IDS taxonomy by Debar et al...........ccccoecieeierieniiniecieeieee e, 12
Figure 7 — Identification of activities relevant to the evaluation of IDSes...........ccceecvveuennen. 19
Figure 8 — System model used for activity taXOnomyccccceeevvieriieeerirenieeciee e eevee e 20
Figure 9 — Activity scope tree with generic activity SCOPEs ONlyccccevveercveereecrienreenieenens 23
Figure 10 — Activity scope tree including specific activity SCOPEScevveererrirreeecieeieeieeneenn 24
Figure 11 — Example of functional activity SCOPEScvvervieeruiieriieiiieeieeereeeieeesveeevee s 30
Figure 12 — Activity scope graph including functional activity SCOPES........ccevervrreererrueeeense. 31
Figure 13 — Overview of aCtiVity taXONOMYcc.eeeuverererverreereeieesseeseesseessessesseesseesseessees 34
Figure 14 — Distribution of attacks on activity class SI1Zes.........ccceeeereerierieriieeieeieeeeeeenn 40
Figure 15 — IDS taXONOMY OVEIVIEWc..eeeiuieeriieeerieeiiieesteeesteeesiseesseeesseessessssseesssesssseessses 43
Figure 16 — Intrusion detection system model..........c.oecverierieiiiniiieiieneesee e 44
Figure 17 — Overview of activity scope independent sensor attributes.............cccceeceeecveeeeennen. 46
Figure 18 — Overview of information source type taXOonomYcceeceveeerrveesveesveeeseveenneens 48
Figure 19 — Overview of scope dependent sensor attributesc.eevvevverieecveeveeveesreeseeennn 49
Figure 20 — Overview of activity scope independent ID engine attributescccceveeueeee. 53
Figure 21 — Overview of data pre-processing ID engine attributes...........ccccceeevveerveeereeennen. 53
Figure 22 — Overview of instance analysis (excl. bi-directional instance analysis)................ 56
Figure 23 — Overview of instance analysis ID engine attributes............ccoecvvrvrverreereerveneennen. 57
Figure 24 — Characteristics of statistical instance and instance part analysis...........cc.cceuee..... 62
Figure 25 — Entity relationship diagram of the database used to store IDS descriptions......... 65
Figure 26 — Histogram of dynamic activity characteristics, excluding attributes 69
Figure 27 — Histogram of dynamic activity characteristics, including attributes.................... 70
Figure 28 — Histogram of interface 0bJECTSccueiiiuiiiiiiiiiieeieecieeeee et 71
Figure 29 — Distribution of affected ObJECtS.....cveviiriiieciieiieieieece e 72
Figure 30 — Histogram of dynamic activity characteristics with affected objects................... 73
Figure 31 — Histogram of interface objects with dynamic activity characteristics.................. 74
Figure 32 — Histogram of interface objects with affected objects........ccccevvvvvviieciievieneenieennen. 75
Figure 33 — Data flow in VUIDA......c.coccieriiiiiiiieeieeieeieeee et e et ensaesees 78
Figure 34 — Overview of the vulnerability description Structure.............cceceeveeereeneereeneennen. 79

95

Malicious- and Accidental-Fault Tolerance for Internet Applications

Figure 35 — Statistics of attack classification superposing attacked object, attack interface and

AttACK ChATACTETISTICS ..uveuvieutitieiieieeiee ettt 81
Figure 36 — Statistics of concurrent occurrences of attack characteristicsc.ccecvveeruveeneen. 82
Figure 37 — Vulnerability browser—example with the operating system AIX............ccccoueeneee. 83
Figure 38 — Vulnerability browser—example with the attacked object process..........c.ccoe..... 83

96

Towards a Taxonomy of Intrusion Detection Systems and Attacks

References

[Alessa00]

[Almgre99]

[Amoro99]

[Anders80]

[Apache]
[AsKrSp96]

[Aslam95]

[Axelss00]

[Axelss99]

[BasPer84]

[BeGIRa98]

[CA0198]

[CA0696]

[CA0797]

Dominique Alessandri, “Using Rule-Based Activity Descriptions to Evaluate
Intrusion-Detection Systems,” presented at Third International Workshop on
Recent Advances in Intrusion Detection (RAID2000), Toulouse, France,
published in LNCS, vol. 1907,
http.//link.springer.de/link/service/series/0558/bibs/1907/19070183.htm, 2000,
pp. 183--96.

Magnus Almgren, “Design and Implementation of a Lightweight Tool for
Detecting Web Server Attacks,” Master's thesis, Uppsala: University of
Uppsala, Sweden, Department of Scientific Computing, 1999, pp. 60.

E. G. Amoroso, Intrusion Detection: An Introduction to Internet Surveillance,
Correlation, Trace Back, Traps, and Response, first ed. Sparta, New Jersey:
Intrusion.Net Books, 1999, ISBN 0-9666700-7-8.

James P. Anderson, “Computer Security Threat Monitoring and Surveillance,”
James P. Anderson Co., Fort Washington, PA, April 1980.

Apache Foundation, “Apache webserver software,” http.//www.apache.org/.

Taimur Aslam, Ivan Krsul, and Eugene H. Spafford, “Use of A Taxonomy of
Security Faults,” Purdue University, COAST Laboratory, West Lafayette, IN,
Tech. Report TR-96-051, 1996.

Taimur Aslam, “A Taxonomy of Security Faults in the UNIX Operating
System,” M.S. Thesis, West Lafayette, IN: Purdue University, Computer
Sciences Department, 1995, pp. 120.

Stefan Axelsson, “Intrusion Detection Systems: A Survey and Taxonomy,”
Chalmers University of Technology, Dept. of Computer Engineering,
Goteborg, Sweden, Technical Report 99-15,
http://www.ce.chalmers.se/staff/sax/taxonomy.ps, 2000.

Stefan Axelsson, “The Base-rate Fallacy and its Implications for the Difficulty
of Intrusion Detection,” presented at 6th ACM Conference on Computer and
Communications Security, Singapore, 1999.

V. Basili and B. Perricone, “Software Errors and Complexity,”
Communications of the ACM, vol. 27, pp. 42--52, 1984.

R. Benjamin, B. Gladman, and B. Randell, “Protecting IT Systems from Cyber
Crime,” Imperial College, London, UK, Technical Report 1998.

CERT Coordination Center, “‘smurf IP Denial-of-Service Attacks,” CERT
Coordination Center, Pittsburgh, PA, Advisory CA-98.01,
fip://fip.cert.org/pub/cert _advisories/CA-98.01.smurf, 1998.

CERT Coordination Center, “Vulnerability in NCSA/Apache CGI example
code,” CERT Coordination Center, Pittsburgh, PA, Advisory CA-96.06,
fip://ftp.cert.org/pub/cert _advisories/CA-96.06.cgi_example code, 1996.

CERT Coordination Center, “Vulnerability in the httpd nph-test-cgi script,”
CERT Coordination Center, Pittsburgh, PA, Advisory CA-97.07,

97

[CA1201]

[CA1395]

[CA2897]

[CDEKS96]

[CheBel94]

[CIN0498]

[CIN0799]

[CiscoNR99]

[Cohen95]

[CSRC]

[CVE99]

fip://fip.cert.org/pub/cert _advisories/CA-97.07.nph-test-cgi_script, 1997.

CERT Coordination Center, “Superfluous Decoding Vulnerability in IIS,”
http://www.cert.org/advisories/CA-2001-12.html, 2001, last update: May 15,
2001.

CERT Coordination Center, “Syslog Vulnerability - A Workaround for
Sendmail,” CERT Coordination Center, Pittsburgh, PA, Advisory CA-95.13,
1995.

CERT Coordination Center, “IP Denial-of-Service Attacks,” CERT
Coordination Center, Pittsburgh, PA, Advisory CA-97.28,
fip://fip.cert.org/pub/cert_advisories/CA-97%3A428. Teardrop Land, 1997.

Mark Crosbie, Bryn Dole, Todd Ellis, Ivan Krsul, and Eugene Spafford,
“IDIOT - User Guide,” Purdue University, COAST Laboratory, West
Lafayette, IN, Tech. Report 1996.

W. R. Cheswick and S. M. Bellovin, Firewalls and Internet Security -
Repelling the Wily Hacker. Reading, MA: Addison-Wesley Publishing
Company, 1994.

CERT Coordination Center, “CERT Incident Note IN-98-04 - Advanced
Scanning,” CERT Coordination Center, Pittsburgh, Incident Note IN-98-04,
http://www.cert.org/incident notes/IN-98-04.html, 1998.

CERT Coordination Center, “CERT Incident Note IN-99-07 - Distributed
Denial of Sevice Tools,” CERT Coordination Center, Pittsburgh, Incident Note
IN-99-07, http://www.cert.org/incident notes/IN-99-07.html, 1999.

Commercial Product, “NetRanger,” Cisco Systems Inc.,

http://www.cisco.com/warp/public/cc/cisco/mkt/security/nranger/prodlit/netra
_ds.htm, 1999.

F. B. Cohen, Protection and Security on the Information Superhighway. New
York: John Wiley & Sons, 1995.

National Institute of Standards and Technology (NIST), “Computer Security
Resource Center (CSRC),” http.//csrc.nist.gov/.

The MITRE Corporation, “Common Vulnerabilities and Exposures,”
http://cve.mitre.org/, 1999,

[CVE033301] CVE editorial board, “CAN-2001-0333,” http://cve.mitre.org/cgi-

[D1Maf00]

[D2Maf01]

[DacAle99]

[DCWMS99]

bin/cvename.cgi?name=CAN-2001-0333, 2001.

MAFTIA Consortium, “Reference Model and Use Cases,” C. Cachin, Ed.
Malicious- and Accidental- Fault Tolerance for Internet Applications,
MAFTIA project deliverable D1, 2000.

MAFTIA Consortium, “Architecture and revised model of MAFTIA,” R.
Stroud, Ed. Malicious- and Accidental- Fault Tolerance for Internet
Applications, Newcastle upon Tyne, UK, MAFTIA project deliverable D2, (in
preparation), 2001.

Marc Dacier and Dominique Alessandri, “VulDa: A Vulnerability Database,”
presented at 2nd Workshop on Research with Security Vulnerability
Databases, Purdue University, IN, 1999,

Robert Durst, Terrence Champion, Brian Witten, Eric Miller, and Luigi
Spanguolo, “Testing and Evaluating Computer Intrusion Detection Systems,”

98

[DeBeSi92]

[DeDaWe00]

[DeDaWe99]

[DeHuDo00]

[DeMMat95]

[Dennin87]

[DLARO1]

[Dobson89]

[ElmNav94]

[EsSaPi95]

[Gross97]

[HalBau00]

[Howard97]

[HucWel00]

[IANAPN]

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Comm. of ACM, vol. 42, July 1999.

Hervé Debar, Monique Becker, and Didier Siboni, “A neural network
component for an intrusion detection system,” presented at IEEE Computer
Society Symposium on Research in Security and Privacy, Oakland, CA, 1992,
pp- 240--50.

Hervé Debar, Marc Dacier, and Andreas Wespi, “A Revised Taxonomy for
Intrusion-Detection Systems,” presented at Annales des Télécommunications,
vol. 55, 2000, pp. 361-78.

Hervé Debar, Marc Dacier, and Andreas Wespi, “Towards a Taxonomy of
Intrusion Detection Systems,” Computer Networks, vol. 31, pp. 805-22, 1999.

H. Debar, M.-Y. Huang, and D. J. Donahoo, “Intrusion Detection Exchange
Format Data Model,” http://www.ietf.org/internet-drafts/draft-ietf-idwg-data-
model-03.txt, 2000, last update: June 15, 2000.

R. A. DeMillo and A. P. Mathur, “A Grammar Based Fault Classification
Scheme and its Application to the Classification of the Errors of TEX,” Purdue
University, Software Engineering Research Center, West Lafayette, IN,
Technical Report TR-165-P, 1995.

Dorothy Denning, “An Intrusion-Detection Model,” IEEE Transactions on
Software Engineering, vol. 13, pp. 222--32, 1987.

P. Dasgupta, R. J. LeBlanc, M. Ahmad, and U. Ramachandran, “The Clouds
Distributed Operating System,” [EEE Computer, vol. 24, pp. 34--44, 1991.

John Dobson, “Modeling real-world issues for dependable software,” in High-
integrity Software, C. T. Sennett, Ed. London: Pitman, 1989, pp. 274--316.

Ramez Elmasri and Shamkant B. Navathe, Fundamentals of Database
Systems, second ed. Redwood City: The Benjamin/Cummings Publishing
Company, Inc., 1994, ISBN 0-8053-1753-8.

M. Esmaili, R. Safavi-Naini, and J. Pieprzyk, “Computer Intrusion Detection:
A Comparative Survey,” Center for Computer Security Research, University
of Wollongong, Wollongong, NSW, Australia, Technical Report 95-07/06,
1995.

Andrew H. Gross, “Analyzing Computer Intrusions,” Ph.D. Thesis, San Diego,
CA: University of California, San Diego Supercomputer Center, 1997, pp. 233.

L. R. Halme and R.K. Bauer, “AINT Misbehaving: A Taxonomy of Anti-
Intrusion Techniques,”
http://www.sans.org/newlook/resources/IDFAQ/aint. htm, 2000.

John D. Howard, “An Analysis Of Security Incidents On The Internet,” Ph.D.
Thesis, Pittsburgh, PA: Canegie Mellon University, Engineering and Public
Policy, 1997, pp. 292.

Andrew Hutchison and Marc Welz, “IDS/A: An Interface between Intrusion
Detection System and Application,” presented at Recent Advances in Intrusion
Detection, Third International Workshop, RAID2000, Toulouse, France,
http://www.raid-symposium.org/raid2000/Materials/Abstracts/21/21.pdyf,

2000, pp. 13.

Internet Assinged Number Authority (IANA), “Port Numbers,”
http://'www.iana.org/assignments/port-numbers, last update: June 7, 2001.

99

[IcSeVo095]

[ISSNet99]

[1SSSca99]

[1SSSer00]

[Jackso99]

[JiSiIr00]

[JLADGJ93]

[Julisc00]

[KeSpZa00]

[Knuth89]

[KrSpTro8]

[Krsul98]

[Kumar95]

[KumSpa95]

D. Icove, K. Seger, and W. VonStorch, Computer Crime: A Crimefighter's
Handbook. Sebastopol, CA: O'Reilly & Associates, Inc., 1995, ISBN 1-56592-
086- 4.

ISS, “RealSecure Network Sensor v3.0,” Internet Security Systems Inc. (ISS),
http://www.iss.net/securing_e-

business/security_products/intrusion_detection/realsecure_networksensor/,
1999.

Commercial Product, “Internet Scanner v5.8,” Internet Security Systems Inc.
(ISS), http.//www.iss.net/, 1999.

ISS, “RealSecure Server Sensor,” Internet Security Systems Inc. (ISS),
http://www.iss.net/securing_e-

business/security products/intrusion_detection/realsecure_serversensor/,
2000.

Kathleen Jackson, “Intrusion Detection System (IDS) Product Survey,” Los
Alamos National Laboratory, Los Alamos, NM, Technical Report LA-UR-99-
3883, 1999.

Jitsu-Disk, Simple = Nomad, and Irib, “Delirium Tremens,”
http://www.phrack.org/show.php?p=56&a=6, 2000.

R. Jagannathan, et al., “System design document: Next-generation intrusion
detection expert system (NIDES),” SRI International, 333 Ravenswood
Avenue, Menlo Park, CA 94025, Tech. Report
A007/A008/A009/A011/A012/A014, 1993.

Klaus Julisch, “Dealing with False Positives in Intrusion Detection,” presented
at Recent Advances in Intrusion Detection, Third International Workshop,
RAID2000, Toulouse, France, http://www.raid-
symposium.org/raid2000/Materials/Abstracts/50/Julisch_foils RAID2000.pdf,
2000.

Florian Kerschbaum, Eugene H. Spafford, and Diego Zamboni, “Using
embedded sensors for detecting network attacks,” presented at First ACM
Workshop on Intrusion Detection Systems, Athens, Greece,
http://www.cerias.purdue.edu/homes/zamboni/pubs/wids2000.{pdf|ps}, 2000.

D. E. Knuth, “The Errors of TEX,” Software - Practice and Experience, vol.
19, pp. 607--85, 1989.

Ivan Krsul, Eugene Spafford, and Mahesh Tripunitara, “Computer
Vulnerability Analysis,” COAST Laboratory, Purdue University, West
Lafayette, IN, Technical Report 1998.

Ivan Victor Krsul, “Software Vulnerability Analysis,” Ph.D. Thesis: Purdue
University, Computer Sciences Department, 1998, pp. 171.

Sandeep Kumar, “Classification and Detection of Computer Intrusions,” Ph.D.
Thesis, West Lafayette, IN: Purdue University, Computer Sciences
Department, fip://coast.cs.purdue.edu/pub/COAST/papers/kumar-intdet-
phddiss.ps.Z, 1995.

Sandeep Kumar and Eugene Spafford, “A Taxonomy of Common Computer
Security Vulnerabilities based on their Method of Detection,” COAST
Laboratory, Purdue University, West Lafayette, IN, Technical Report 1995.

100

[LaAvK092]

[LBMW94]

[LCRM98]

Towards a Taxonomy of Intrusion Detection Systems and Attacks

J. C. Laprie, A. Avizienis, and H. Kopetz (Eds.), Dependability: Basic
Concepts and Terminology, vol. 5: Springer Verlag, 1992, ISBN 3-211-82296-
8.

Carl E. Landwehr, Alan R. Bull, John P. McDermott, and William S. Choi, “A
Taxonomy of Computer Program Security Flaws,” Information Technology
Division, Naval Research Laboratory, Washington, D.C., WA 20375-5337,

1994.

Douglas J. Landoll, Diann A. Carpenter, Christopher J. Romeo, and Suzanne
S. McMillion, “AIX Version 4.3.1 TCSEC Evaluated C2 Security,” Arca
Systems, TTAP Evaluation Facility, Final Report CSC-FER-98-004,
http://www.radium.ncsc.mil/tpep/library/fers/CSC-FER-98-004.pdf; 1998.

[LFGHKMOO]R. Lippmann, et al, “Evaluating Intrusion Detection Systems: The 1998

[LHFKDOO]

[LinJon97]

[Longst97]

[LSMTTF98]

[Lunt88]

[lunt90a]

[ManChr99]

[MatAvi70]

[MBDRM]

DARPA Off-Line Intrusion Detection Evaluation,” presented at DISCEX'00 -
DARPA Information Survivability Conference & Exposition, Hilton Head, SC,
vol. 2, 2000, pp. 12-26.

Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, and
Kumar Das, “Analysis and Results of the 1999 DARPA Off-Line Intrusion
Detection Evaluation,” presented at Third Intl. Workshop on Recent Advances
in Intrusion Detection (RAID2000), Toulouse, published in LNCS, vol. 1907,
2000, pp. 162--82.

UIf Lindqvist and Erland Jonsson, “How to Systematically Classify Computer
Security Intrusions,” presented at IEEE Symposium on Security & Privacy,
Oakland, CA, http://www.ce.chalmers.se/staff/jonsson/publ97-.html,
http://www.ce.chalmers.se/staff/ulfl/pubs/sp97ul pdf, 1997, pp. 154-63.

T. Longstaff, “Update: CERT/CC Vulnerability Knowledgebase,” presented at
DARPA workshop, Savannah, GA, 1997.

Peter A. Loscocco, Stephen D. Smalley, Patrick A. Muckelbauer, Ruth C.
Taylor, S. Jeff Turner, and John F. Farrell, “The Inevitability of Failure: The
Flawed Assumptions of Security in Modern Computing Environments,”
National Security Agency, 1998.

T. F. Lunt, “Automated audit trail analysis and intrusion detection: A survey,”
presented at 11th National Computer Security Conference, Baltimore, MD,
1988, pp. 65--73.

Teresa F. Lunt, “IDES: An Intelligent System for Detecting Intruders,”
presented at Symposium of Computer Security, Threat and Countermeasures,
Rome, Italy, 1990.

David E. Mann and Steven M. Christey, “Towards a Common Enumeration of
Vulnerabilities,” presented at 2nd Workshop on Research with Security
Vulnerability Databases, Purdue University, West Lafayette, 1IN,
http://cve.mitre.org/docs/towards.ps, 1999.

Francis Mathur and Algirdas Avizienis, “Reliability analysis and architecture
of a hybrid-redundant digital system: Generaized triple modular redundancy
with self repair,” presented at AFIPS (American Federation for Information
Processing), Atlantic City, NJ, 1970, pp. 375-83.

Peter Mell, Elizabeth Boteler, Derek Dye, Michael Reilly, and David Marks,
“ICAT Metabase,” http://icat.nist.gov/.

101

[McHugh00]

J. McHugh, “The Lincoln Laboratories Intrusion Detection System Evaluation:
A Critique,” presented at DISCEX'00 - DARPA Information Survivability
Conference & Exposition, Hilton Head, SC, 2000.

[McHughOOb] John McHugh, “The 1998 Lincoln Laboratory IDS Evaluation: A Critique,”

[MCZH99]

[MeyPra87]

presented at Third Intl. Workshop on Recent Advances in Intrusion Detection
(RAID2000), Toulouse, published in LNCS, vol. 1907, 2000, pp. 143--61.

St. Manganaris, M. Christensen, D. Zerkle, and K. Hermiz, “ A Data Mining
Analysis of RTID Alarms,” presented at Second International Workshop on
Recent Advances in Intrusion Detection (RAID'99), West Lafayette, IN,
http://www.raid-symposium.org/raid99/PAPERS/Manganaris.pdf, 1999.

F. Meyer and D. Pradhan, “Consensus with Dual Failure Modes,” presented at
The 17th International Symposium on Fault-Tolerant Computing Systems,
Pittsburgh, PA, 1987, pp. 214--22.

[MWSKHH90] N. McAuliffe, D. Wolcott, L. Schaefer, N. Kelem, B. Hubbard, and T. Haley,

[MySql]
[Nessus00]
[Neuman95]

[Neuman98]

[Neuman98b]

[NeuParg89]

[NIAP97]

[NSA98]

[OMED92]
[OstWey]

[Paxson98]

“Is your computer being misused? A survey of current intrusion detection
system technology,” presented at Sixth Computer Security Applications
Conference, 1990, pp. 260--72.

MySQL AB, “MySQL Database,” http.//www.mysql.com/, 2000.
Renaud Deraison, “Nessus,” http://www.nessus.org/intro.html, 2000.

Peter G. Neumann, Computer-Related Risks. Reading, MA: ACM Press and
Addison-Wesley, 1995, ISBN 0-201-55805-X.

Peter G. Neumann, “Practical Architectures for Survivable Systems and
Networks,” Computer Science Laboratory, SRI International, Menlo Park, CA,
Technical Report http://www.csl.sri.com/~neumann/private/aridraft.{pdfps},
October 1998.

Peter G. Neumann, “Illustrative Risks to the Public in the Use of Computer
Systems and Related Technology,” Computer Science Laboratory, SRI
International, Menlo Park, CA, Technical Report
ftp://ftp.csl.sri.com/pub/users/meumann/illustrative. {pdfips}, October 1998.

Peter G. Neumann and Donn B. Parker, “A Summary of Computer Misuse
Techniques,” presented at 12th National Computer Security Conference,
Baltimore, MD, 1989, pp. 396--407.

National Institute of Standards and Technology (NIST) and National Security
Agency (NSA), “NIAP - National Information Assurance Partnership,”
http://niap.nist.gov/, 1997.

National Security Agency (NSA), “NSA Glossary of Terms Used in Security
and Intrusion Detection,”
http://www.sans.org/mewlook/resources/glossary.htm, 1998.

The Oxford Modern English Dictionary: Oxford University Press, 1992.

T. Ostrand and E. Weyuker, “Collecting and Categorizing Software Error Data
in an industrial Environment,” The Journal of Systems and Software, vol. 4,
pp. 289--300, 1984.

Vern Paxson, “Bro: A System for Detecting Network Intruders in Real-Time,”
presented at 7th USENIX Security Symposium, San Antonio, TX, Attp://www-
nrg.ee.lbl.gov/nrg-papers.html, 1998.

102

[Paxson99]

[PBSVWS8]

[Perl87]

[PHP]

[phpAdm]

[Powell95]

[Power96]

[Roesch99]

[SANS]

[Schnei00]

[SecFoc]
[SF2708]

[SinSig01]

[Sobire98]

[Spaffo88]

[SpaZamO0]

[SpaZamOO0b]

[Stalli95]

Towards a Taxonomy of Intrusion Detection Systems and Attacks

Vern Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer Networks, vol. 31, pp. 2435-63, 1999.

D. Powell, G. Bonn, D. Seaton, P. Verissimo, and F. Waeslynck, “The Delta-4
Approach to Dependability in Open Distributed Computing Systems,”
presented at 18th IEEE International Symposium on Fault-Tolerant Computing
Systems (FTCS-18), Tokyo, Japan, 1988, pp. 246--51.

Perl Mongers, “Perl,” http://www.perl.org/, 1987.

PHP, “PHP - Hypertext preprocessor,” http://www.php.net/, 2000.

phpWizard, “phpMyAdmin - MySQL administration over the web,”
http://phpwizard.net/projects/phpMyAdmin/, 2000.

David Powell, “Failure Mode Assumptions and Assumption Coverage: A
Revised Version,” LAAS-CNRS, Toulouse, France, Research Report 91462,
fip://ftp.laas.fr/pub/Publications/1991/91462.ps, 1995.

R. Power, “Current and Future Danger: A CSI Primer of Computer Crime &
Information Warefare,” CSI Bulletin 1996.

Marty Roesch, “Snort - The Lightweight Open Source Network Intrusion
Detection System,” http://www.snort.org/, 1999.

Consortium, “SANS (System Administration, Networking, and Security)
Institute,” http.//www.sans.org/.

Bruce Schneier, Secret & Lies: Digital Security in a Networked World, 1st ed.
New York: John Wiley & Sons, inc., 2000, ISBN 0-471-25311-1.

SecurityFocus Inc., “SecurityFocus,” http.//www.securityfocus.com, 1999.

SecurityFocus Inc., “MS IIS/PWS Escaped Characters Decoding Command
Execution Vulnerability,” http.//www.securityfocus.com/bid/2708, 2001.

Thomas Singer and Rolf Sigg, “Smart Intrusion Detection Systems,” Diploma
Thesis, Zurich, Switzerland: Swiss Federal Institute of Technology (ETH),
Institut fiir Technische Informatik und Kommunikationsnetze (TIK), 2001, pp.
113.

Michael Sobirey, ‘“Michael Sobirey's Intrusion Detection Systems page,”
http://www-rnks.informatik.tu-cottbus.de/~sobirey/ids.html, November 1998.

E. H. Spafford, “The Internet Worm Program: An Analysis,” Purdue
University, Technical Report NCSD-TR-823, 1988.

Eugene H. Spafford and Diego Zamboni, “Design and implementation issues
for embedded sensors in intrusion detection,” presented at Third International
Workshop on Recent Advances in Intrusion Detection (RAID2000), Toulouse,
France, http://www.cerias.purdue.edu/homes/zamboni/pubs/sensors-
raid2000.{ps|pdf}, 2000.

Eugene H. Spafford and Diego Zamboni, “Data collection mechanisms for
intrusion detection systems,” CERIAS, Purdue University, 1315 Recitation
Building, West Lafayette, IN, Tech. Report 2000-08,
http://www.cerias.purdue.edu/homes/zamboni/pubs/2000-08.{ps|pdf}, 2000.

W. Stallings, Network and Internetwork Security Principles and Practice.
Englewood Cliffs, NJ: Prentice Hall, 1995, ISBN 0-02-415483-0.

103

[Sundar96]

[Tanenb87]

[Tanenb96]

[Thomas96]

[Tripw99]

[TRMO0]

[VMware(00]
[WDDNO9S]

[Webster]

[WeDaDe00]

[Weinma9§]

[WesDeb99]

[WooErl01]

[Zalews01]

Aurobindo Sundaram, “An Introduction to Intrusion Detection,” ACM
Crossroads Student Magazine, pp. 10, http://www.acm.org/crossroads/xrds2-
4/intrus.html, 1996.

A. S. Tanenbaum, Operating Systems Design and Implementation: Prentice
Hall, 1987.

Andrew S. Tanenbaum, Computer Networks, 3rd ed: Prentice-Hall Inc., 1996,
ISBN 0-13-394248-1.

Stephen A. Thomas, IPng and the TCP/IP protocols: implementing the next
generateion internet, first ed. New York: John Wiley & Sons, Inc., 1996,

ISBN 0-471-13088-5.

Commercial Product, “Tripwire v1.2,” Tripwire Security Systems Inc.,
http://www.tripwiresecurity.com/, 1999.

Tivoli Systems, “Tivoli SecureWay Risk Manager, User's Guide v3.7,” IBM
Corp., http://www.tivoli.com/products/index/secureway_risk_mgr/, 2000.

Inc. VMware, “VMware Workstation v2.0,” http://'www.vmware.com/, 2000.

Andreas Wespi, Marc Dacier, Hervé Debar, and Mehdi M. Nassehi, “Audit
Trail Pattern Analysis for Detecting Suspicious Process Behavior,” presented
at RAID 98, Workshop on Recent Advances in Intrusion Detection, Louvain-
la-Neuve, Belgium,
http://www.zurich.ibm.com/pub/Other/RAID/Prog RAID98/Table of content.
html, 1998.

Website, “Merriam-Webster's Collegiate Dictionary,”
http://www.britannica.com/bcom/dictionary/.

Andreas Wespi, Marc Dacier, and Hervé Debar, “Intrusion Detection Using
Variable-Length Audit Trail Patterns,” presented at Third International
Workshop on Recent Advances in Intrusion Detection (RAID2000), Toulouse,
France, published in LNCS, vol. 1907,
http://link.springer.de/link/service/series/0558/bibs/1907/19070110.htm, 2000,
pp. 110--30.

William E. Weinman, “About Web Server Logs: Common Log Format,”
http://www.weinman.com/wew/log-talk/clf-html, 1998.

Andreas Wespi and Hervé Debar, “Building an Intrusion-Detection System to
Detect Suspicious Process Behavior,” presented at RAID 99, Workshop on
Recent Advances in Intrusion Detection, West Lafayette, IN, 1999.

M. Wood and M. Erlinger, “Intrusion Detection Message Exchange
Requirements,” http://www.ietf.org/internet-drafts/draft-ietf-idwg-
requirements-05.txt, 2001, last update: February 20, 2001.

Michal Zalewski, “Delivering Signals for Fun and Profit - Understanding,
exploiting and preventing signal-handling related vulnerabilities.,”
http://www.securityfocus.com/archive/1/187124, 2001, last update: May 16,
2001.

104

	Revisions
	Editor
	Contributors
	Address
	Table of contents
	Introduction
	Motivation
	Approach
	Contributions
	Outline

	MAFTIA and Related work
	MAFTIA Terminology
	Security policy
	Generalized MAFTIA terminology
	Intrusion Detection
	Error Detection
	Fault Diagnosis

	Failure model

	Taxonomies
	IDS taxonomies
	Attack taxonomies
	Vulnerability taxonomies
	Enumeration of vulnerabilities

	Evaluation of IDSes
	Discussion of and motivation for IDS evaluation
	Fault-masking by means of redundancy and voting
	Failure assumption coverage and correlation
	Our approach to IDS evaluation
	Attack classifications

	Activity taxonomy
	Activity scope
	Generic activity scopes
	Specific activity scopes
	Networking related activity scopes
	Host related activity scopes

	Functional activity scopes
	Networking related functional activity scopes
	Host related functional activity scopes

	Static activity characteristics
	Affected object
	Interface object

	Dynamic activity characteristics
	Communication
	Method invocation
	Activity attributes

	Attack Classification
	Discussion
	Conclusion

	IDS taxonomy
	Intrusion detection system model
	Sensor
	Activity scope independent sensor attributes
	Information source type

	Activity scope dependent sensor attributes

	Intrusion detection engine
	Activity scope independent ID engine attributes
	Data pre-processing ID engine attributes
	Instance analysis ID engine attributes
	Instance analysis levels
	Generic analysis techniques
	Timing analysis techniques
	Information item analysis
	Data category analysis

	Cross-instance analysis techniques
	Sequence analysis techniques
	Statistical analysis

	Representation of IDS descriptions
	Database structure

	Discussion
	Conclusion

	Conclusions
	Contributions
	Future directions

	Tables
	Figures
	References

