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Chapter 1 Introduction

This deliverable builds on the work reported in [MAFTIA 2000] and [Powell & Stroud 2001].
It contains a further refinement of the MAFTIA conceptual model and a revised discussion of
the MAFTIA architecture. It also introduces the work done in MAFTIA on verification and
assessment of security properties, which is reported on in more detail in [Adelsbach & Creese
2003].

Chapter 2 is taken from [Avizienis et al. 2001] and presents core dependability concepts. This
is a complete update with respect to [Powell & Stroud 2001]. It presents the latest version of
the dependability concepts and gives a brief state of the art. This includes an analysis of the
relationship between the terms dependability, survivability, and trustworthiness, all of which
are seen to be essentially the same concept.

Chapter 3 refines the core dependability concepts in the context of malicious faults. The
chapter now includes a completely new discussion of security policies and the relationship
between security goals, properties, and rules. It is argued that a security failure only occurs if
a security goal is violated, although violation of a security rule may lead the system into a
state in which it is more liable to a security failure. There is also a discussion of the possible
faults that can lead to security failures. The chapter continues by examining the distinction
between intrusions, attacks, and vulnerabilities, and a taxonomy of different kinds of
malicious logic has been added. There is also a discussion of how the traditional methods of
building dependable systems, namely fault prevention, fault tolerance, fault removal, and fault
forecasting, can be re-interpreted in a security context. The definition of an attack has been
revised to distinguish between an attack as a human activity, and an attack as a technical
activity, and as a result of this change, it is now possible to distinguish ten distinct security
methods.

Chapter 4 introduces the topic of intrusion tolerance and shows how intrusion-detection
systems relate to the traditional dependability notions of error detection and fault diagnosis. It
goes on to present a framework for building intrusion-tolerant systems. The idea is that
components in the overall system may be internally or externally monitored for erroneous
behaviour. Some components may be intrusion-tolerant in that they can autonomously recover
from detected errors. Detected errors are reported to a security administration component of
the system that is responsible for diagnosis and managing intrusions at the system-wide level.
A number of diagrams have been added to clarify intrusion detection concepts, and explain
the role of the system security officer and the security subsystem in error detection, fault
handling, and corrective maintenance.

Chapter 5 provides an overview of the MAFTIA architecture. It includes a discussion of the
models and assumptions on which this architecture is based, together with an explanation of
the various layers of the MAFTIA middleware and run-time support mechanism. There is also
a description of the various intrusion-tolerance strategies that can be used to build intrusion-
tolerant services. The chapter has been revised to explain the MAFTIA architecture in terms
of the notion of trusted components that are only trusted to the extent of their trustworthiness.
It is argued that this is an important new and innovative way of thinking about architectures
for intrusion-tolerant systems, and the description of the MAFTIA architecture is now
presented in these terms. The chapter is intended to summarise some of the key ideas
underpinning the MAFTIA architecture, and thus serves as an introduction to some of the
other deliverables, which go into more technical detail about these topics.

Chapter 6 discusses the formalisation of MAFTIA concepts and architectural principles, and
introduces the work done on verification and assessment of secure systems, highlighting the
novel contributions of MAFTIA in this area. In terms of the basic dependability concepts
discussed in Chapter 3, the purpose of verification and assessment is vulnerability removal.
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The chapter has been updated to reflect the latest results of this work, and also contains a
substantial new section on issues surrounding the formalisation of security policies. The work
on verification and assessment is discussed in much more detail in [Adelsbach & Creese
2003], which is based on previous work reported in [Adelsbach & Pfitzmann 2001, Adelsbach
& Steiner 2002, Creese & Simmonds 2002].

Chapter 7 concludes the deliverable with a discussion of what has been achieved and a
glossary of the terms used is given at the end of the report.
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Chapter 2 Fundamental concepts of dependability2

Dependability is the system property that integrates such attributes as reliability, availability,
safety, security, survivability, maintainability. The aim of this chapter is to summarize the
fundamental concepts of dependability.

The protection and survival of complex information systems that are embedded in the
infrastructure supporting advanced society has become a national and worldwide concern of
the highest priority [Jones 2000]. Increasingly, individuals and organizations are developing
or procuring sophisticated computing systems on whose services they need to place great
reliance — whether to service a set of cash dispensers, control a satellite constellation, an
airplane, a nuclear plant, or a radiation therapy device, or to maintain the confidentiality of a
sensitive data base. In differing circumstances, the focus will be on differing properties of
such services — e.g., on the average real-time response achieved, the likelihood of producing
the required results, the ability to avoid failures that could be catastrophic to the system’s
environment, or the degree to which deliberate intrusions can be prevented. The notion of
dependability provides a very convenient means of subsuming these various concerns within a
single conceptual framework.

Our goal is to present a concise overview of the concepts, techniques and tools that have
evolved over the past forty years in the field of dependable computing and fault tolerance.
After a historical perspective, definitions of dependability are given. A structured view of
dependability follows, according to a) the threats, i.e., faults, errors and failures, b) the
attributes, and c) the means for dependability, namely fault prevention, fault tolerance, fault
removal and fault forecasting.

2.1 Origins and integration of the concepts
The delivery of correct computing and communication services has been a concern of their
providers and users since the earliest days. In the July 1834 issue of the Edinburgh Review,
Dr. Dionysius Lardner published the article “Babbage’s calculating engine”, in which he
wrote:

“The most certain and effectual check upon errors which arise in the process of
computation, is to cause the same computations to be made by separate and
independent computers; and this check is rendered still more decisive if they
make their computations by different methods”.

The first generation of electronic computers (late 1940s to mid-50s) used rather unreliable
components, therefore practical techniques were employed to improve their reliability, such as
error control codes, duplexing with comparison, triplication with voting, diagnostics to locate
failed components, etc. At the same time J. von Neumann, E. F. Moore and C. E. Shannon,
and their successors developed theories of using redundancy to build reliable logic structures
from less reliable components, whose faults were masked by the presence of multiple
redundant components. The theories of masking redundancy were unified by W. H. Pierce as
the concept of failure tolerance in 1965 (Academic Press). In 1967, A. Avizienis integrated
masking with the practical techniques of error detection, fault diagnosis, and recovery into the
concept of fault-tolerant systems [Avizienis 1967]. In the reliability modelling field, the major
event was the introduction of the coverage concept by Bouricius, Carter and Schneider

                                                       
2 This chapter is available separately as the following report: A. Avizienis, J.-C. Laprie and B.

Randell, Fundamental Concepts of Dependability, LAAS-CNRS, Research Report 01145, August
2001, Revision 1: December 2002 (UCLA CSD Report no. 010028; Newcastle University Report
no. CS-TR-739). It is reproduced here with the authors’ permission.
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[Bouricius et al. 1969]. Seminal work on software fault tolerance was initiated by B. Randell
[Randell 1975], and later complemented by work on N-version programming [Avizienis &
Chen 1977].

The formation of the IEEE-CS TC on Fault-Tolerant Computing in 1970 and of IFIP WG
10.4 Dependable Computing and Fault Tolerance in 1980 accelerated the emergence of a
consistent set of concepts and terminology. Seven position papers were presented in 1982 at
FTCS-12 in a special session on fundamental concepts of fault tolerance, and J.-C. Laprie
formulated a synthesis in 1985 [Laprie 1985]. Further work by members of IFIP WG 10.4, led
by J.-C. Laprie, resulted in the 1992 book Dependability: Basic Concepts and Terminology
(Springer-Verlag), in which the English text was also translated into French, German, Italian,
and Japanese.

In this book, intentional faults (malicious logic, intrusions) were listed along with accidental
faults (physical, design, or interaction faults). Exploratory research on the integration of fault
tolerance and the defences against deliberately malicious faults, i.e., security threats, was
started in the mid-80s [Dobson & Randell 1986, Fray et al. 1986]. The first IFIP Working
Conference on Dependable Computing for Critical Applications was held in 1989. This and
the six Working Conferences that followed fostered the interaction of the dependability and
security communities, and advanced the integration of security (confidentiality, integrity and
availability) into the framework of dependable computing.

2.2 The definitions of dependability
A systematic exposition of the concepts of dependability consists of three parts: the threats
to, the attributes of, and the means by which dependability is attained, as shown in Figure 1.

DEPEN DABILIT Y ATTRIBUTES

AVAILABILITY 
RELIABILITY
SAFETY
CONFIDENTIALITY
INTEGRITY
MAINTAINABILITY

FAULT PREVENTION
FAULT TOLERANCE
FAULT REMOVAL
FAULT FORECASTING

MEANS

THREATS
FAULTS
ERRORS
FAILURES

Figure 1 — The dependability tree

Computing systems are characterized by five fundamental properties: functionality, usability,
performance, cost, and dependability. Dependability is the ability of a computing system to
deliver service that can justifiably be trusted. The service delivered by a system is its
behaviour, as perceived by its user(s); a user is another system (physical, human) that
interacts with the former at the service interface. The function of a system is what the system
is intended to do, and is described by the functional specification. Correct service is
delivered when the service implements the system function. A system failure is an event that
occurs when the delivered service deviates from correct service. A failure is thus a transition
from correct service to incorrect service, i.e., to not implementing the system function. The
delivery of incorrect service is a system outage. A transition from incorrect service to correct
service is service restoration. Based on the definition of failure, an alternate definition of
dependability, which complements the initial definition in providing a criterion for
adjudicating whether the delivered service can be trusted or not, is as follows: the ability of a
system to avoid failures that are more frequent or more severe, and outage durations that are
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longer, than is acceptable to the user(s). In the opposite case, the system is no longer
dependable: it suffers from a dependability failure.

2.3 The threats: faults, errors, and failures
A system may fail either because it does not comply with the specification, or because the
specification did not adequately describe its function. An error is that part of the system state
that may cause a subsequent failure: a failure occurs when an error reaches the service
interface and alters the service. A fault is the adjudged or hypothesized cause of an error. A
fault is active when it produces an error; otherwise it is dormant.

A system does not always fail in the same way. The ways in which a system can fail are its
failure modes. These can be ranked according to failure severities. The modes characterize
incorrect service according to four viewpoints:

•  the failure domain,

•  the controllability of failures,

•  the consistency of failures, when a system has two or more users,

•  the consequences of failures on the environment.

Figure 2 shows the modes of failures according to the above viewpoints, as well as failure
symptoms that result from the combination of the domain, controllability and consistency
viewpoints. The failure symptoms can be mapped into the failure severities as resulting from
grading the consequences of failures.

DEGRADED SERVICE

SAFE SHUTDOWN

SIGNALLED FAILURE

CRASH  FAILURE

UNSIGNALLED FAILURE

BYZANTINE FAILURE

FAILURES

VALUE FAILURES

TIMING FAILURES
DOMAIN

CONSISTENT FAILURES

INCONSISTENT FAILURES
CONSISTENCY

FAILURE
SYMPTOMS

CONSEQUENCES
MINOR FAILURES

CATASTROPHIC FAILURES

•
•
•

FAILURE
SEVERITIES

CONTROLLED FAILURES

SIGNALLED FAILURESCONTROLLABILITY

UNSIGNALLED FAILURES

Figure 2 — The failure modes

A system consists of a set of interacting components, therefore the system state is the set of its
component states. A fault originally causes an error within the state of one (or more)
components, but system failure will not occur as long as the error does not reach the service
interface of the system. A convenient classification of errors is to describe them in terms of
the component failures that they cause, using the terminology of Figure 2: value vs. timing
errors; consistent vs. inconsistent (‘Byzantine’) errors when the output goes to two or more
components; errors of different severities: minor vs. ordinary vs. catastrophic errors. An error
is detected if its presence is indicated by an error message or error signal. Errors that are
present but not detected are latent errors.

Faults and their sources are very diverse. Their classification according to six major criteria is
presented in Figure 3. It could be argued that introducing phenomenological causes in the
classification criteria of faults may lead recursively to questions such as ‘why do
programmers make mistakes?’, ‘why do integrated circuits fail?’ Fault is a concept that serves
to stop recursion. Hence the definition given: adjudged or hypothesized cause of an error.
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This cause may vary depending upon the viewpoint that is chosen: fault tolerance
mechanisms, maintenance engineer, repair shop, developer, semiconductor physicist, etc.

PERSISTENCE
PERMANENT FAULTS

TRANSIENT FAULTS

HARDWARE FAULTS

SOFTWARE FAULTS
DOMAIN

NATURAL FAULTS

HUMAN-MADE FAULTS
PHENOMENOLOGICAL
CAUSE

SYSTEM BOUNDARIES
INTERNAL FAULTS

EXTERNAL FAULTS

PHASE OF CREATION 
OR OCCURENCE

DEVELOPMENTAL FAULTS

OPERATIONAL FAULTS

FAULTS

ACCIDENTAL, OR  NON-MALICIOUS DELIBERATE, FAULTS

DELIBERATELY MALICIOUS FAULTS
!INTENT

Figure 3 — Elementary fault classes

Combining the elementary fault classes of Figure 3 leads to the tree of the upper part of
Figure 4. The leaves of the tree are gathered into three major fault classes for which defences
need to be devised: design faults, physical faults, interaction faults. The boxes of Figure 4
point at generic illustrative examples of fault classes.

Non-malicious deliberate faults can arise during either development or operation. During
development, they result generally from tradeoffs, either a) aimed at preserving acceptable
performance and facilitating system utilization, or b) induced by economic considerations;
such faults can be sources of security vulnerabilities, e.g., in the form of covert channels.
Non-malicious deliberate interaction faults may result from the action of an operator either
aimed at overcoming an unforeseen situation, or deliberately violating an operating procedure
without having realized the possibly damaging consequences of his or her action. Non-
malicious deliberate faults have the property that they are often only recognized as faults after
an unacceptable system behaviour, thus a failure, has ensued; the specifier(s), designer(s),
implementer(s) or operator(s) did not realize that the consequence of some decision of theirs
was a fault.

Malicious faults affecting software fall into two classes: a) malicious logics [Landwehr et al.
1994], that encompass developmental faults such as Trojan horses, logic or timing bombs,
and trapdoors, as well as operational faults (with respect to the given system) such as viruses
or worms, and b) intrusions. There are interesting and obvious similarities between an attack
that exploits a vulnerability (to cause an intrusion) and a physical external fault that ‘exploits’
a lack of shielding. It is in addition noteworthy that a) the external character of intrusions does
not exclude the possibility that they may be attempted by system operators or administrators
who are abusing their rights, and that b) attacks may use physical means to cause faults:
power fluctuation, radiation, wire-tapping, etc.



Conceptual Model and Architecture of MAFTIA

7

FAULTS
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ACC. ACC. DEL.
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DE L.
MAL .

ACC.
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MADE NATURAL NATU RAL

DE L.
MAL .

HUMAN-
MADE

HUM AN-
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HARDWA RE HARDWARE SOF TWARE

INTERNALIN TERNAL EXTERNAL

PHENO MONELOG ICAL
CA USE

PHASE  OF CREAT ION
OR OCCURRE NCE

SYSTEM  
BOUNDA RIES

PERSI STENCE

IN TENT

DOM AIN

DESIGN FAULTS PHYSIC AL FAULTS INTERACTION FAULTS

INTRUSIONS

ATTACKSMALICIOUS
LOGICS

SOFTWARE
FLAWS

HARDWARE
ERRATA

PHYSICAL
INTERFERENCE

PRODUCTION
DEFECTS

INPUT
MISTAKES

ACC .
OR

NON
M AL.
DEL.

ACC.
OR

NON
M AL.
DEL.

PHYSICAL
DETERIORATION

ACC.
OR

NON
MAL.
DE L.

MALICIOUS
LOGICS

Figure 4 — Combined fault classes

Some design faults affecting software can cause so-called software aging, i.e., progressively
accrued error conditions resulting in performance degradation or activation of elusive faults.
Examples are memory bloating and leaking, unreleased file-locks, storage space
fragmentation.

The relationship between faults, errors, and failures is addressed in Appendix A of this
chapter, page 13.

Two final comments about the words, or labels, ‘fault’, ‘error’, and ‘failure’:

though we have chosen to use just these terms in this document, and to employ adjectives to
distinguish different kinds of faults, errors and failures, we recognize the potential
convenience of using words that designate, briefly and unambiguously, a specific class of
threats; this is especially applicable to faults (e.g. bug, flaw, defect, deficiency, erratum) and
to failures (e.g. breakdown, malfunction, denial-of-service);

the semantics of the terms fault, error, failure reflect current usage: i) fault prevention,
tolerance, and diagnosis, ii) error detection and correction, iii) failure rate, failure mode.

2.4 The attributes of dependability
Dependability is an integrative concept that encompasses the following basic attributes:

•  availability: readiness for correct service,

•  reliability: continuity of correct service,

•  safety: absence of catastrophic consequences on the user(s) and the environment,

•  confidentiality: absence of unauthorized disclosure of information,

•  integrity: absence of improper system state alterations,

•  maintainability: ability to undergo repairs and modifications.
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Depending on the application(s) intended for the system, different emphasis may be put on
different attributes. The description of the required goals of the dependability attributes in
terms of the acceptable frequency and severity of the failure modes, and of the corresponding
acceptable outage durations (when relevant), for a stated set of faults, in a stated environment,
is the dependability requirement of the system.

Several other dependability attributes have been defined that are either combinations or
specializations of the six basic attributes listed above. Security is the concurrent existence of
a) availability for authorized users only, b) confidentiality, and c) integrity with ‘improper’
taken as meaning ‘unauthorized’. Characterizing a system’s reaction to faults is of special
interest, via, e.g., robustness, i.e., dependability with respect to erroneous inputs.

The attributes of dependability may be emphasized to a greater or lesser extent depending on
the application: availability is always required, although to a varying degree, whereas
reliability, safety, confidentiality may or may not be required. The extent to which a system
possesses the attributes of dependability should be interpreted in a relative, probabilistic,
sense, and not in an absolute, deterministic sense: due to the unavoidable presence or
occurrence of faults, systems are never totally available, reliable, safe, or secure.

Integrity is a prerequisite for availability, reliability and safety, but may not be so for
confidentiality (for instance, attacks via covert channels or passive listening can lead to a loss
of confidentiality, without impairing integrity). The definition given for integrity – absence of
improper system state alterations – extends the usual definition as follows: (a) when a system
implements an authorization policy, ‘improper’ encompasses ‘unauthorized’; (b) ‘improper
alterations’ encompass actions that prevent (correct) upgrades of information; (c) ‘system
state’ encompasses hardware modifications or damages. The definition given for
maintainability goes beyond corrective and preventive maintenance, and encompasses forms
of maintenance aimed at adapting or perfecting the system.

Security has not been introduced as a single attribute of dependability. This is in agreement
with the usual definitions of security, which view it as a composite notion, namely ‘the
combination of (1) confidentiality (the prevention of the unauthorized disclosure of
information), (2) integrity (the prevention of the unauthorized amendment or deletion of
information), and (3) availability (the prevention of the unauthorized withholding of
information)’ [ITSEC]. A single definition for security could be: the absence of unauthorized
access to, or handling of, system state.

Besides the attributes defined at the beginning of the section, and discussed above, other,
secondary, attributes can be defined. An example of such a secondary attribute is robustness,
i.e., dependability with respect to external faults, which characterizes a system’s reaction to a
specific class of faults. The notion of secondary attributes is especially relevant for security,
when we distinguish among various types of information. Examples of such secondary
attributes are:

•  accountability: availability and integrity of the identity of the person who
performed an operation,

•  authenticity: integrity of a message content and origin, and possibly of some other
information, such as the time of emission,

•  non-repudiability: availability and integrity of the identity of the sender of a
message (non-repudiation of the origin), or of the receiver (non-repudiation of
reception).

Variations in the emphasis on the different attributes of dependability directly affect the
appropriate balance of the techniques (fault prevention, tolerance, removal and forecasting) to
be employed in order to make the resulting system dependable. This problem is all the more
difficult as some of the attributes conflict (e.g. availability and safety, availability and
security), necessitating design trade-offs.



Conceptual Model and Architecture of MAFTIA

9

Other concepts similar to dependability exist, such as survivability and trustworthiness. They
are presented in Appendix B of this chapter, page 15.

2.5 The means to attain dependability
The development of a dependable computing system calls for the combined utilization of a set
of four techniques:

•  fault prevention: how to prevent the occurrence or introduction of faults,

•  fault tolerance: how to deliver correct service in the presence of faults,

•  fault removal: how to reduce the number or severity of faults,

•  fault forecasting: how to estimate the present number, the future incidence, and the
likely consequences of faults.

The concepts relating to these techniques are presented in this section. A brief state-of-the-art
is presented in Appendix C of this chapter, page 16

2.5.1 Fault prevention
Fault prevention is attained by quality control techniques employed during the design and
manufacturing of hardware and software. Such techniques include structured programming,
information hiding, modularization, etc., for software, and rigorous design rules for hardware.
Shielding, radiation hardening, etc., intend to prevent operational physical faults, while
training, rigorous procedures for maintenance, ‘foolproof’ packages, intend to prevent
interaction faults. Firewalls and similar defences intend to prevent malicious faults.

2.5.2 Fault tolerance
Fault tolerance is intended to preserve the delivery of correct service in the presence of active
faults. It is generally implemented by error detection and subsequent system recovery.

Error detection originates an error signal or message within the system. An error that is
present but not detected is a latent error. There exist two classes of error detection techniques:

•  concurrent error detection, which takes place during service delivery,

•  preemptive error detection, which takes place while service delivery is suspended;
it checks the system for latent errors and dormant faults.

Recovery transforms a system state that contains one or more errors and (possibly) faults into
a state without detected errors and faults that can be activated again. Recovery consists of
error handling and fault handling. Error handling eliminates errors from the system state. It
may take three forms:

•  rollback, where the state transformation consists of returning the system back to a
saved state that existed prior to error detection; that saved state is a checkpoint,

•  compensation, where the erroneous state contains enough redundancy to enable
error elimination,

•  rollforward, where the state without detected errors is a new state.

Fault handling prevents faults from being activated again. Fault handling involves four steps:

•  fault diagnosis, which identifies and records the cause(s) of error(s), in terms of
both location and type,

•  fault isolation, which performs physical or logical exclusion of the faulty
components from further participation in service delivery, i.e., it makes the fault
dormant,
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•  system reconfiguration, which either switches in spare components or reassigns
tasks among non-failed components,

•  system reinitialization, which checks, updates and records the new configuration
and updates system tables and records.

Usually, fault handling is followed by corrective maintenance that removes faults isolated by
fault handling. The factor that distinguishes fault tolerance from maintenance is that
maintenance requires the participation of an external agent.

Systematic usage of compensation may allow recovery without explicit error detection. This
form of recovery is called fault masking. However, such simple masking will conceal a
possibly progressive and eventually fatal loss of protective redundancy; thus, practical
implementations of masking generally involve error detection (and possibly fault handling).

Preemptive error detection and handling (often called BIST: built-in self-test), possibly
followed by fault handling is often performed at system power up. It may also come into play
during operation, under various forms such as spare checking, memory scrubbing, audit
programs, or so-called software rejuvenation, aimed at removing the effects of software aging
before they lead to failure.

Fail-controlled systems are designed and implemented so that they fail only in specific
modes of failure described in the dependability requirement and only to an acceptable extent,
e.g., with stuck output as opposed to delivering erratic values, silence as opposed to babbling,
consistent as opposed to inconsistent failures. A system whose failures are, to an acceptable
extent, halting failures only is a fail-halt, or fail-silent, system. A system whose failures are,
to an acceptable extent, all minor ones is a fail-safe system.

The choice of error detection, error handling and fault handling techniques, and of their
implementation, is directly related to the underlying fault assumption. The classes of faults
that can actually be tolerated depend on the fault assumption in the development process. A
widely-used method of fault tolerance is to perform multiple computations in multiple
channels, either sequentially or concurrently. When tolerance of operational physical faults is
required, the channels may be of identical design, based on the assumption that hardware
components fail independently. Such an approach has proven to be adequate for elusive
design faults, e.g., via rollback, however it is not suitable for the tolerance of solid design
faults, which necessitates that the channels implement the same function via separate designs
and implementations, i.e., through design diversity [Avizienis & Chen 1977, Randell 1975].

Fault tolerance is a recursive concept: it is essential that the mechanisms that implement fault
tolerance should be protected against the faults that might affect them. Examples are voter
replication, self-checking checkers, ‘stable’ memory for recovery programs and data, etc.
Systematic introduction of fault tolerance is facilitated by the addition of support systems
specialized for fault tolerance such as software monitors, service processors, dedicated
communication links.

Fault tolerance is not restricted to accidental faults. Some mechanisms of error detection are
directed towards both malicious and accidental faults (e.g., memory access protection
techniques) and schemes have been proposed for the tolerance of both intrusions and physical
faults, via information fragmentation and dispersal [Fray et al. 1986], as well as for tolerance
of malicious logic, and more specifically of viruses, either via control flow checking, or via
design diversity [Joseph & Avizienis 1988].

2.5.3 Fault removal
Fault removal is performed both during the development phase, and during the operational
life of a system.

Fault removal during the development phase of a system life-cycle consists of three steps:
verification, diagnosis, correction. Verification is the process of checking whether the system
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adheres to given properties, termed the verification conditions. If it does not, the other two
steps follow: diagnosing the fault(s) that prevented the verification conditions from being
fulfilled, and then performing the necessary corrections. After correction, the verification
process should be repeated in order to check that fault removal had no undesired
consequences; the verification performed at this stage is usually termed non-regression
verification.

Checking the specification is usually referred to as validation. Uncovering specification
faults can happen at any stage of the development, either during the specification phase itself,
or during subsequent phases when evidence is found that the system will not implement its
function, or that the implementation cannot be achieved in a cost effective way.

Verification techniques can be classified according to whether or not they involve exercising
the system. Verifying a system without actual execution is static verification, via static
analysis (e.g., inspections or walk-through), model-checking, theorem proving. Verifying a
system through exercising it constitutes dynamic verification; the inputs supplied to the
system can be either symbolic inputs in the case of symbolic execution, or actual inputs in
the case of verification testing, usually simply termed testing. An important aspect is the
verification of fault tolerance mechanisms, especially a) formal static verification, and b)
testing that necessitates faults or errors to be part of the test patterns, a technique that is
usually referred to as fault injection. Verifying that the system cannot do more than what is
specified is especially important with respect to what the system should not do, thus with
respect to safety and security. Designing a system in order to facilitate its verification is
termed design for verifiability. This approach is well-developed for hardware with respect to
physical faults, where the corresponding techniques are termed design for testability.

Fault removal during the operational life of a system is corrective or preventive maintenance.
Corrective maintenance is aimed at removing faults that have produced one or more errors
and have been reported, while preventive maintenance is aimed to uncover and remove
faults before they might cause errors during normal operation. The latter faults include a)
physical faults that have occurred since the last preventive maintenance actions, and b) design
faults that have led to errors in other similar systems. Corrective maintenance for design faults
is usually performed in stages: the fault may be first isolated (e.g., by a workaround or a
patch) before the actual removal is completed. These forms of maintenance apply to non-
fault-tolerant systems as well as fault-tolerant systems, as the latter can be maintainable on-
line (without interrupting service delivery) or off-line (during service outage).

2.5.4 Fault forecasting
Fault forecasting is conducted by performing an evaluation of the system behaviour with
respect to fault occurrence or activation. Evaluation has two aspects:

•  qualitative, or ordinal, evaluation, which aims to identify, classify, rank the failure
modes, or the event combinations (component failures or environmental conditions)
that would lead to system failures,

•  quantitative, or probabilistic, evaluation, which aims to evaluate in terms of
probabilities the extent to which some of the attributes of dependability are satisfied;
those attributes are then viewed as measures of dependability.

The methods for qualitative and quantitative evaluation are either specific (e.g., failure mode
and effect analysis for qualitative evaluation, or Markov chains and stochastic Petri nets for
quantitative evaluation), or they can be used to perform both forms of evaluation (e.g.,
reliability block diagrams, fault-trees).

The evolution of dependability over a system’s life-cycle is characterized by the notions of
stability, growth, and decrease that can be stated for the various attributes of dependability.
These notions are illustrated by failure intensity, i.e., the number of failures per unit of time.
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It is a measure of the frequency of system failures, as noticed by its user(s). Failure intensity
typically first decreases (reliability growth), then stabilizes (stable reliability) after a certain
period of operation, then increases (reliability decrease), and the cycle resumes.

The alternation of correct-incorrect service delivery is quantified to define reliability,
availability and maintainability as measures of dependability:

•  reliability: a measure of the continuous delivery of correct service — or,
equivalently, of the time to failure,

•  availability: a measure of the delivery of correct service with respect to the
alternation of correct and incorrect service,

•  maintainability: a measure of the time to service restoration since the last failure
occurrence, or equivalently, measure of the continuous delivery of incorrect service,

•  safety is an extension of reliability: when the state of correct service and the states
of incorrect service due to non-catastrophic failure are grouped into a safe state (in
the sense of being free from catastrophic damage, not from danger), safety is a
measure of continuous safeness, or equivalently, of the time to catastrophic failure;
safety is thus reliability with respect to catastrophic failures.

Generally, a system delivers several services, and there are often two or more modes of
service quality, e.g. ranging from full capacity to emergency service. These modes distinguish
less and less complete service deliveries. Performance-related measures of dependability are
usually subsumed into the notion of performability.

The two main approaches to probabilistic fault-forecasting, aimed at deriving probabilistic
estimates of dependability measures, are modelling and (evaluation) testing. These
approaches are complementary, since modelling needs data on the basic processes modelled
(failure process, maintenance process, system activation process, etc.), which may be obtained
either by testing, or by the processing of failure data.

When evaluating fault-tolerant systems, the effectiveness of error and fault handling
mechanisms, i.e. their coverage, has a drastic influence on dependability measures [Bouricius
et al. 1969]. The evaluation of coverage can be performed either through modelling or
through testing, i.e., fault injection.

2.6 Conclusion
A major strength of the dependability concept, as it is formulated in this chapter, is its
integrative nature, that enables a unification of the more classical notions of reliability,
availability, safety, security, maintainability, that are then seen as attributes of dependability.
The fault-error-failure model is central to the understanding and mastering of the various
threats that may affect a system, and it enables a unified presentation of these threats, while
preserving their specificities via the various fault classes that can be defined. Equally
important is the use of a fully general notion of failure as opposed to one that is restricted in
some way to particular types, causes or consequences of failure. The model provided for the
means for dependability is extremely useful, as those means are much more orthogonal to
each other than the more classical classification according to the attributes of dependability,
with respect to which the design of any real system has to perform trade-offs due to the fact
that these attributes tend to conflict with each other.
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Appendix A The pathology of failure: relationship between faults,
errors and failures

The creation and manifestation mechanisms of faults, errors, and failures are illustrated by
Figure 5, and summarized as follows:

1. A fault is active when it produces an error, otherwise it is dormant. An active fault is either
a) an internal fault that was previously dormant and that has been activated by the
computation process or environmental conditions, or b) an external fault. Fault activation
is the application of an input (the activation pattern) to a component that causes a dormant
fault to become active. Most internal faults cycle between their dormant and active states.

2. Error propagation within a given component (i.e., internal propagation) is caused by the
computation process: an error is successively transformed into other errors. Error
propagation from one component (C1) to another component (C2) that receives service
from C1 (i.e., external propagation) occurs when, through internal propagation, an error
reaches the service interface of component C1. At this time, service delivered by C1 to C2
becomes incorrect, and the ensuing failure of C1 appears as an external fault to C2 and
propagates the error into C2. The presence of an error within a system can arise from a) the
activation of an internal fault, previously dormant, b) the occurrence of a physical
operational fault, either internal or external, or c) the propagation of an error from another
system (interacting with the given system) via the service interface, i.e., an input error.

3. A failure occurs when an error is propagated to the service interface and unacceptably
alters the service delivered by the system. A failure of a component causes a permanent or
transient fault in the system that contains the component. Failure of a system causes a
permanent or transient external fault for the other system(s) that interact with the given
system.
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Figure 5 — Error propagation

These mechanisms enable the ‘fundamental chain’ to be completed, as indicated by Figure 6.

errorfault failure fault
activation propagation causation ……

Figure 6 — The fundamental chain of dependability threats

The arrows in this chain express a causality relationship between faults, errors and failures.
They should be interpreted generically: by propagation, several errors can be generated before
a failure occurs.
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Some illustrative examples of fault pathology are given in Table 1. From those examples, it is
easily understood that fault dormancy may vary considerably, depending upon the fault, the
given system's utilization, etc.

Table 1 — Examples illustrating fault pathology

• The result of an error by a programmer leads to a failure to write the correct instruction
or data, which in turn results in a (dormant) fault in the written software (faulty
instruction(s) or data); upon activation (invoking the component where the fault
resides and triggering the faulty instruction, instruction sequence or data by an
appropriate input pattern) the fault becomes active and produces an error; if and when
the error affects the delivered service (in information content and/or in the timing of
delivery), a failure occurs. This example is not restricted to accidental faults: a logic
bomb is created by a malicious programmer; it will remain dormant until activated
(e.g. at some predetermined date); it then produces an error that may lead to a storage
overflow or to slowing down the program execution; as a consequence, service
delivery will suffer from a so-called denial-of-service.

• The result of an error by a specifier leads to a failure to describe a function, which in
turn results in a fault in the written specification, e.g. incomplete description of the
function. The implemented system therefore does not incorporate the missing
(sub-)function. When the input data are such that the service corresponding to the
missing function should be delivered, the actual service delivered will be different
from expected service, i.e., an error will be perceived by the user, and a failure will
thus occur.

• An inappropriate human-system interaction performed by an operator during the
operation of the system is an external fault (from the system viewpoint); the resulting
altered processed data is an error; etc.

• An error in reasoning leads to a maintenance or operating manual writer's failure to
write correct directives, which in turn results in a fault in the corresponding manual
(faulty directives) that will remain dormant as long as the directives are not acted upon
in order to address a given situation, etc.

The ability to identify the activation pattern of a fault that caused one or more errors is the
fault activation reproducibility. Faults can be categorized according to their activation
reproducibility: faults whose activation is reproducible are called solid, or hard, faults,
whereas faults whose activation is not systematically reproducible are elusive, or soft, faults.
Most residual design faults in large and complex software are elusive faults: they are intricate
enough that their activation conditions depend on complex combinations of internal state and
external requests that occur rarely and can be very difficult to reproduce. Other examples of
elusive faults are:

•  ‘pattern sensitive’ faults in semiconductor memories, changes in the parameters of a
hardware component (effects of temperature variation, delay in timing due to
parasitic capacitance, etc.);

•  error conditions — affecting either hardware or software — that occur when the
system load exceeds a certain level, causing, e.g., marginal timing and
synchronization.

The similarity of the manifestation of elusive design faults and of transient physical faults
leads to both classes being grouped together as intermittent faults. Errors produced by
intermittent faults are usually termed soft errors [Bossen & Hsiao 1980].

The complexity of the mechanisms of creation, activation and manifestation of faults leads to
the possibility of several causes. Such complexity leads to the definition, whether for
classifying faults uncovered during operation or for stating fault hypotheses during system
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design, of classes of faults that are more general than the specific classes considered up to
now, in the sense that they may in turn have physical, design or interaction causes, or
combinations of those. An example of such a class of faults is the configuration change
faults: service delivery is altered during adaptive or perfective maintenance operations
performed on-line, concurrently with system operation (e.g., introduction of a new software
version on a network server).

Appendix B Dependability, survivability, trustworthiness: three
names for an essential property

The protection of highly complex societal infrastructures controlled by embedded information
systems against all classes of faults defined in the section on the threats to dependability,
including intelligent attacks, has become a top priority of governments, businesses, and
system builders. As a consequence, different names have been given to the same essential
property that assures protection. Here we compare the definitions of three widely known
concepts: dependability, survivability, and trustworthiness (Table 2).

Table 2 — Dependability, survivability and trustworthiness

Concept Dependability Survivability Trustworthiness

Goal 1) ability to deliver service
that can justifiably be
trusted

2) ability of a system to
avoid failures that are
more frequent or more
severe, and outage
durations that are longer,
than is acceptable to the
user(s)

capability of a system to
fulfil its mission in a timely
manner

assurance that a system
will perform as expected

Threats
present

1) design faults (e.g.,
software flaws, hardware
errata, malicious logics)

2) physical faults (e.g.,
production defects,
physical deterioration)

3) interaction faults (e.g.,
physical interference, input
mistakes, attacks,
including viruses, worms,
intrusions)

1) attacks (e.g., intrusions,
probes, denials of service)

2) failures (internally
generated events due to,
e.g., software design
errors, hardware
degradation, human
errors, corrupted data)

3) accidents (externally
generated events such as
natural disasters)

1) hostile attacks (from
hackers or insiders)

2) environmental
disruptions (accidental
disruptions, either man-
made or natural)

3) human and operator
errors (e.g., software
flaws, mistakes by human
operators)

Reference This chapter “Survivable network
systems”

[Ellison et al. 1997]

“Trust in cyberspace”
[Schneider 1999]

A side-by-side comparison leads to the conclusion that all three concepts are essentially
equivalent in their goals and address similar threats. Trustworthiness omits the explicit listing
of internal faults, although its goal implies that they also must be considered. Such faults are
implicitly considered in survivability via the (component) failures. Survivability was present
in the late sixties in the military standards, where it was defined as a system capacity to resist
hostile environments so that the system can fulfill its mission (see, e.g., MIL-STD-721 or
DOD-D-5000.3); it was redefined recently, as described below. Trustworthiness was used in a
study sponsored by the National Research Council, referenced below. One difference must be
noted. Survivability and trustworthiness have the threats explicitly listed in the definitions,
while both definitions of dependability leave the choice open: the threats can be either all the
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faults of Figure 4 (page 4), or a selected subset of them, e.g., ‘dependability with respect to
design faults’, etc.

Appendix C Where do we stand?

Advances in integration, performance, and interconnection, are the elements of a virtuous
spiral that led to the current state-of-the-art in computer and communication systems.
However, two factors at least would tend to turn this virtuous spiral into a deadly one without
dependability techniques: a) a decreasing natural robustness (due to, e.g., an increased
sensitivity of hardware to environmental perturbations), and b) the inevitability of residual
faults that goes along with the increased complexity of both hardware and software.

The interest in fault tolerance grows accordingly to our dependence in computer and
communication systems. There exists a vast body of results, from error detecting and
correcting codes to distributed algorithms for consensus in the presence of faults. Fault
tolerance has been implemented in many systems; Table 3 lists some existing systems, either
high availability systems or safety-critical systems.

Table 3 — Examples of fault tolerant systems

Tolerance to design faults

Stratus [Wilson 1985] —

Tandem SeverNet [Baker et al. 1995] elusive software design faults

IBM S/390 cluster [Brown!Associates 1998] —
High availability
platforms

Sun cluster [Bowen et al. 1997] —

SACEM Subway speed control [Hennebert &
Guiho 1993]

hardware design faults and
compiler faults

ELEKTRA Railway signalling system [Kantz &
Koza 1995]

hardware and software design
faults

Airbus Flight Control System [Brière & Traverse
1993]

hardware and software design
faults

Safety-critical
systems

Boeing 777 Flight Control System [Yeh 1998] hardware design faults and
compiler faults

The progressive mastering of physical faults has enabled a dramatic improvement of
computing systems dependability: the overall mean time to failure or unavailability has
decreased by two orders of magnitude over the last two decades. As a consequence, design
and human-made interaction faults currently dominate as sources of failure, as exemplified by
Table 4. Tolerance of those two classes of faults is still an active research domain, even if
approaches have been devised and implemented, especially for software design faults.
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Table 4 — Proportions of failures due to accidental or non-malicious deliberate faults
(consequences and outage durations are highly application-dependent)

Computer systems
(e.g., transaction processing

[Gray 1990], electronic
switching [Cramp et al. 1992])

Larger, controlled systems
(e.g., commercial airplanes
[Ruegger 1990], telephone

network [Kuhn 1997])

Rank Proportion of
failures

Rank Proportion of
failures

Physical internal faults 3 ~ 10 % 2 15 - 20 %

Physical external faults 3 ~ 10 % 2 15 - 20 %

Human-made interaction faults 2 ~ 20 % 1 40 - -50 %

Design faults 1 ~ 60 % 2 15 - 20 %

Security has benefited from advances in cryptography (e.g., public key schemes) and in the
policies aimed at controlling information flow. Although there is much less in the way of
published statistics about malicious faults than there is about accidental faults, a recent survey
by Ernst & Young estimated that on the average two-thirds of the 1200 companies surveyed
in 32 countries suffered from at least one fraud per year, and that 84% of the frauds were
perpetrated by employees. System security policies are the current bottleneck, be it due to the
vulnerabilities induced by the inevitable residual design faults in their implementation
mechanisms, or by the necessary laxity without which systems would not be operable. Fault
tolerance is thus needed, for protection from both malicious logics and intrusions.

The cost of verification and validation of a computing system is at least half of its
development cost, and can go as high as three quarters for highly critical systems. The
dominance in these costs of fault removal explains the importance of research in verification:
the density of faults created during software development lies in the range of 10 to 300
faults/kLoC (thousand lines of executable code), down to 0.01 to 10 faults/kLoC after fault
removal. The latter are residual faults, persisting during operation, and such high densities
explain the importance of failures induced by design faults in large software systems.

Significant advances have taken place in both static and dynamic verification. Table 5 lists
various current model checking and theorem proving tools. The current bottleneck lies in the
applicability to large-scale systems, and thus to scalability from critical embedded systems to
service infrastructures.
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Table 5 — Examples of theorem proving and model-checking tools

Model checking Theorem proving

Design/CPN
(http://www.daimi.aau.dk/designCPN/)

FDR
(http://www.formal.demon.co.uk/FDR2.html)

HyTech
(http://www.eecs.berkeley.edu/~tah/HyTech)

KRONOS
(http://www-
verimag.imag.fr/TEMPORISE/kronos/)

NuSMV
(http://sra.itc.it/tools/nusmv/index.html)

SPIN
(http://netlib.bell-labs.com/netlib/spin)

UPPAAL
(http://www.docs.uu.se/docs/rtmv/uppaal/)

Coq Proof Assistant
(http://coq.inria.fr)

HOL
(http://lal.cs.byu.edu/lal/hol-desc.html)

Isabelle
(http://www.cl.cam.ac.uk/Research/HVG/Isabelle/)

PVS
(http://www.csl.sri.com/pvs.html)

The difficulty, or even the impossibility, of removing all faults from a system leads naturally
to fault forecasting. Powerful probabilistic approaches have been developed, widely used as
far as physical operational faults are concerned. Evaluating dependability with respect to
software design faults is still a controversial topic, especially for highly-critical systems.
Table 6 lists various current software tools for stable dependability evaluation. Tools for
reliability growth evaluation are described in the Handbook of software reliability
engineering edited by M. Lyu (McGraw-Hill, 1996). Only recently has the use of probabilistic
evaluation of security started to gain acceptance.

Table 6 — Examples of software tools for dependability evaluation

Stable dependability

Tool name Type of models

SHARPE
(http://www.ee.duke.edu/~chirel/research1)

Fault trees and Markov chains

SPNP
(http://www.ee.duke.edu/~chirel/research1)

Stochastic Petri nets and Markov chains

SURF-2
(http://www.laas.fr/laasef/index.htm)

Stochastic Petri nets and Markov chains

GreatSPN
(http://www.di.unito.it/~greatspn/)

Stochastic Petri nets and Markov chains

Ultra-SAN
(http://www.crhc.uiuc.edu/PERFORM/UltraSAN)

Stochastic Activity Networks

DSPNexpress
(http://www4.cs.uni-dortmund.de/~Lindemann/
software/DSPNexpress/mainE.html)

Deterministic and stochastic Petri nets

Complementarity of fault removal and fault forecasting is yet more evident for fault tolerant
systems for which verification and validation must, in addition to functional properties,
address the ability of those systems to deal with faults and errors. Such verifications involve
fault injection. Table 7 lists various current fault-injection tools.
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Table 7 — Examples of fault-injection tools

Hardware, pin level, fault
injection

Software implemented fault
injection

Simulators with fault injection
capability

RIFLE
(http://eden.dei.uc.pt:80/~henriq
ue/Informatica/Rifle.html)

FERRARI
(http://www.cerc.utexas.edu/
~jaa/ftc/fault-injection.html)

Xception
(http://eden.dei.uc.pt:80/~henriq
ue/Informatica/Xception.html)

MAFALDA
(http://www.laas.fr/laasve/
index.htm)

DEPEND
(http://www.crhc.uiuc.edu/
DEPEND/depend.html)

MEFISTO
(http://www.laas.fr/laasve/
index.htm)

VERIFY
(http://www3.informatik.uni-
erlangen.de/Projects/
verify.html)

Confining within acceptable limits development costs of systems of ever-growing complexity
necessitates development approaches involving pre-existing components, either acquired
(COTS, commercial off-the-shelf software, or OSS, open source software) or re-used. The
dependability of such components may be inadequate or simply unknown, which leads to the
necessity of characterizing their dependability before using them in a development, or even to
improve their dependability via wrapping them.

Improving the state of the art in dependable computing is crucial for the very future of
Sciences and Technologies of Information and Communication. Computer failures cost
society tens of billions of dollars each year, and the cumulative cost of cancelled software
developments is of the same order of magnitude (http://standishgroup.com/visitor/chaos.htm).
Significant actions have been undertaken, such as the High Confidence Software and Systems
component of the Federal Research Programme on Technologies of Information, or the Cross-
Programme Action on Dependability of the European Information Society Technology
Programme.
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Chapter 3 Refinement of core concepts with respect to
malicious faults

In this chapter we elaborate on the core dependability concepts with respect to malicious
faults and generalise towards security in general. These generalisations constitute our
contribution towards a unified terminology for the security domain and are intended to
complement existing work such as the glossary initiated by the NSA (National Security
Agency) [NSA 1998].

3.1 Security policies
The security literature is somewhat confused as to the exact nature of security policies and
their role in the design and maintenance of a secure system. A security policy may vary from
a “set of managerial platitudes”, to borrow Anderson’s phrase [Anderson 2001], at one
extreme to something quite rigorous like a Role Based Access Control (RBAC) policy at the
other [Ferraiolo & Kuhn 1992]. Furthermore, a security policy typically spans several levels
of abstraction: at the highest level it states the security requirements in the form of goals, at
lower levels it might stipulate particular mechanisms and implementations and detailed rules
such as minimal length of keys and passwords. A security policy will also typically span both
the technical and social aspects of the system.

We will think of a security policy as comprising both goals and rules and we draw a
distinction between these. Goals are intended to capture the high-level security requirements
and as such any violation of the goals constitutes a security failure. The rules will typically be
lower level constraints on the system behaviour that are designed to ensure that the system is
robust against (possibly malicious) faults. Violations of the rules will typically not correspond
to security failures but correspond to erroneous states in which the system is more prone to
failure.

Ideally, a security policy should be so structured that the rules imply the goals. That is,
conformity with the rules guarantees that the goals are upheld. In practice, things tend not to
be so simple: some security goals may be difficult or impossible to reduce to technical rules
and socio-technical mechanisms are required to induce users to maintain the spirit of the
policy. Sometimes it may be simpler to express a goal directly in terms of rules. Thus the
distinction between goals and rules may not be entirely clear-cut.

3.1.1 Security goals
We will interpret the security goals or requirements of a system as being high-level statements
of what security properties the system must guarantee. The violation of a security goal
corresponds to a security failure of the system. Typical security goals might include: “the
confidentiality of sensitive data must be maintained”, or “the integrity and availability of
system data to authorised users must be maintained”.

As they stand such statements have very little meaning until we have made precise the
meanings of the various terms. We will discuss shortly the definition of the basic security
properties such as: confidentiality, availability, integrity and so on. The security policy will
also serve to define what data is regarded as sensitive and which users are regarded as
authorised to exercise which privileges.

3.1.2 Security rules
Rules often take the form of constraints on the system states and transitions. By “system” here
we mean in the broad socio-technical sense; embracing the human users as well as the purely
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technical aspects (computers, networks etc). Some of the rules will apply to the users and take
the form of prohibitions, duties and obligations. The rules that serve to constrain the
behaviour of the technical system will usually take the form of access or privilege control
rules and we will refer to such rules as “technical rules”. Rules that constrain the human users
will be referred to as “social rules”. Where we mean the ensemble of rules, both technical and
social, we will use the term “rules”.

In a well-structured security policy, the rules should imply the goals, i.e., adherence to the
rules should result in the system maintaining the goals. However the rules will typically be
stronger than the goals. That is, the rules will be sufficient but not necessary. Violation of a
rule will not necessarily, of itself, constitute a security failure but may render the system more
liable to a security failure. Thus, for example, a rule may stipulate that passwords must be
random and of minimal length 8 characters. Violation of such a rule does not immediately
constitute a security failure but does make the system more liable to a guessing or dictionary
attack on the password. In the terminology of dependability, we see that the violation of such
a rule is best thought of as corresponding to an error.

The arguments that allow us to conclude that a set of rules imply certain security goals
typically involve various architectural and modelling assumptions and approximations. For
example, we may wish to argue that certain access controls imply that sensitive information
will not be available to unauthorised users. The argument will depend on numerous
assumptions about the strength of mechanism (e.g., that 8 random characters is sufficient for
passwords, 128 bit AES is effectively unbreakable etc.), possible access modes and
non-bypassability of the access control mechanisms.

3.1.3 Security properties
Here we give informal descriptions of the principal security properties.

3.1.3.1 Confidentiality

Confidentiality (sometimes referred to as secrecy) is the property that unauthorised users do
not acquire knowledge of sensitive information. It is usually expressed in terms of appropriate
controls on information flows. The policy will specify what flows are allowed and which are
forbidden, i.e., which users may have sight of which data items.

There is no equivalent in traditional dependability of “loss of confidentiality”. Moreover, loss
of confidentiality may be very difficult to detect. Loss of confidentiality means that some
information is present in a place (computer storage, paper, some user’s brain…) where it
should not be. This is an error, i.e., “part of the system state which may lead to a failure”, the
failure being the disclosure of this information outside the considered system. This error, at
least theoretically, can be detected: the state of the (socio-technical) system is different to
what it would be in the absence of error, so comparison of different copies should detect that.
Moreover, if “undetachable” labels are attached to items of information, it may be possible to
detect that this information should not be where it is, e.g., presence of information labelled as
secret in an unclassified file (the labels form a sort of error-detecting code). As for other
errors, a confidentiality error can be inferred by a detected failure (e.g., publication of the
confidential information in a newspaper). The failure may remain undetected (the information
is propagated to unauthorised users, but not published) in the same way as other failures can
remain undetected for a long time (e.g., the Therac system).

Another issue with loss of confidentiality is the inherent difficulty of recovery. Since a lost
secret cannot become secret again, the only apparent way to recover confidentiality is to
substitute a new secret for the lost secret, e.g., by asking a user to choose a new password
(i.e., a form of forward recovery). This can be done pre-emptively in order to limit the
duration of the threat posed by a compromised secret. For some forms of information it may
be extremely difficult to recover from breaches of confidentiality. Once sensitive medical
history information has leaked it cannot simply be updated, for example.
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We describe, in Chapter 6 of this document, how security models allow us to formally define
information flows in terms of an appropriate underlying model of computation or interaction,
in particular how we can characterise the absence of information flow over a particular
channel or interface.

3.1.3.2 Integrity

In the most general and abstract terms, we can think of data integrity as being the property
that the data remain “valid” in an appropriate sense. Sometimes this notion of validity may be
in terms of a notion of internal consistency, in which case it can be specified purely in terms
of the state of the target system. An example of this might be the requirement to keep books
balanced in a financial application. Sometimes it means rather more: that the data accurately
reflect an external reality.  In a medical application, for example, this might mean that a
patient record accurately represents the patient’s medical history. Such a definition cannot be
given purely in terms of the consistency of the system state and requires reference to the state
of the environment.

In practice, integrity properties are often replaced by operational constraints: records can only
be created and modified by authorised users. This shifts the problem of defining the “validity”
of data to one of depending on (i.e., trusting) the honesty and competence of the authorised
users. This interpretation of integrity can be viewed as being a dual of confidentiality. Thus,
confidentiality requires that sensitive information not flow to unauthorised users, whilst
integrity requires that unauthorised users not influence (integrity) sensitive information. Thus,
the direction in which information flow is forbidden is flipped.

Sometimes these operational constraints are elaborated to include stipulations that access be
only through certain “well-formed” functions (or methods in an object-oriented context). A
well-formed function here is defined to be one that is guaranteed to preserve the appropriate
internal consistency requirement. Thus, for banking applications, well-formed accounting
functions will ensure that the books remain balanced. The Clark-Wilson model provides a
framework for describing such mechanisms [Clark & Wilson 1987]. Such mechanisms can
help maintain internal consistency requirements but are little help with external consistency
requirements.

3.1.3.3 Availability

Confidentiality and integrity are, roughly speaking, about preventing undesirable events
occurring. Availability on the other hand is about ensuring that desirable events do occur.
When a user requests a service for which they are authorised, the system should ensure that
this service is provided in both a correct and timely fashion. There are thus two aspects to an
availability property: the value domain and the time domain.

The timeliness aspect of availability is sometimes defined as: the system will provide the
service eventually. The problem with such a definition is that a system can never be deemed
in finite time to have failed against such a requirement (though if the system returns an
incorrect value it will have failed against the correctness aspect of the requirement). As a
result, availability is sometimes defined in terms of some finite response time or quality of
service requirement.

3.1.3.4 Other security properties

Many security properties can be defined in terms of the confidentiality, integrity and
availability of the information or the service itself, or of some meta-information3 related to the
information or service. Examples of such meta-information include:

                                                       
3 Of course, at some level (e.g., at the operating system level), meta-information might be embodied

as “real” information.
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•  time of a service delivery, or of creation, modification or destruction of an item of
information;

•  identity of the person who invoked an operation: creator of an item of information,
author of a document, sender or receiver of an item of information, etc.;

•  location or address of an item of information, a communication entity, a device, etc.;

•  existence of an item of information or a service;

•  existence of an information transfer, or a communication channel, or of a message,
etc.;

•  occurrence of an operation;

•  sensitivity level of an item of information or meta-information;

•  certainty or plausibility level of an item of information or meta-information;

For example, an accountability property [CEN 13608-1, ISO 7498-2, Trouessin 2000] can be
expressed in terms of the availability and integrity of a set of meta-information about the
existence of an operation, the identity of the person who realised the operation, the time of the
operation, etc. Anonymity is the confidentiality of the identity of the person, for instance, who
invoked an operation. Privacy is confidentiality with respect to personal data, which can be
either “information” (such as the content of a registration database), or “meta-information”
such as the identity of a user who performed a particular operation, sent a particular message,
received the message, etc.

Traffic analysis is an attack against the confidentiality of communication meta-information, to
gain knowledge of the existence of a channel, of the existence of a message, of the identities,
locations or addresses of the message sender and receiver, of the time of a communication,
etc.

Authenticity is the property of being “genuine”. For a message, authenticity is equivalent to
integrity of both the message content (information integrity) and of the message origin, and
possibly of other meta-information such as time of emission, classification level, etc. (meta-
information integrity). In the same manner, a document is authentic if its content has not been
altered (information integrity) and optionally if the declared author is the real author and not a
plagiarist, if the publication date is correct, etc. (meta-information integrity). In the same way,
an alleged user is authentic if the declared identity is the real identity of that person.
Authentication is the process that gives confidence in authenticity.

Non-repudiation corresponds to the availability and authenticity of some meta-information,
such as creator identity (and possibly time of creation) for non-repudiation of origin, or
reception and receiver identity for non-repudiation of reception.

Many security properties can be expressed in terms of the availability, integrity and
confidentiality properties applied to information and meta-information.

3.1.3.5 Discussion

Some remarks are in order regarding the nature of certain security properties. These become
important when we come to map them onto the MAFTIA conceptual model. Many security
properties turn out not to be trace properties (also known as safety properties). That is to say,
they cannot be stated as predicates over behaviours (traces) of the target system. A trace of a
system S can be thought of as a record of certain observables of a particular execution of S.
We will use the terms “a trace” and “an execution” interchangeably. We do not need to be
precise at this stage about the form that this record takes: it could be a record of a sequence of
actions or states or indeed a combination.
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A trace/safety property defines those behaviours that are regarded as acceptable or safe, and
so can be expressed as a set of traces. To verify that a given system S satisfies a given safety
property, it suffices to determine that the trace set t(S) of S is a subset of the set of safe traces.

To check that a system maintains a safety property at run time, we can simply monitor its
actions and check that the trace remains in the set of safe traces.  As soon as an action a
occurs that takes the trace outside the set of allowed traces, the property will have been
violated and the action a will be regarded as a failure.

It is useful at this point to introduce the concept of an Execution Monitor (EM) [Schneider
2000]. An EM is a conceptual device that runs in parallel with the system, observing the
(relevant aspects of the) system behaviour and blocking any action of the target system that
would result in a violation of the trace property in question. Given an arbitrary system S and
arbitrary trace property P we can define an EM that will constrain S’s behaviours and ensure
that the composed system satisfies P.

Note that an EM has no-look ahead or look-sideways capability. That is to say, the
determination of what actions are allowed after a given execution depends only on the trace
up to that point and cannot depend on information about possible future behaviour or possible
alternative behaviours. In particular, the EM has no model of the system or environment that
might inform its decisions as to what actions to block. Such devices might be interesting to
investigate, but they fall outside the class of execution monitors that we are considering here.

Trace properties therefore have a special significance:

•  They can be defined in terms of individual executions

•  They can be enforced by an execution monitor

•  Violations have a clear cut characterisation at a well defined point in an execution.

•  They are preserved by standard refinement relations. In particular, if a trace t
satisfies the property, then so will any prefix of t.

By contrast, some of the basic security properties fail to be trace properties.

For example, the timeliness aspect of availability cannot be captured as a trace property, and a
violation cannot even be detected by an EM, let alone enforced. If we observe an execution of
S, there will never be a point in the execution at which we can say that the availability
property has been violated. We cannot determine that a system will never perform a certain
action by observing it for some finite time: there will always be the possibility that the
required action will be performed at some later time.

On the other hand, if we adopt a time-limited notion of availability, we can express this as a
trace property and detect a violation at run time: If during some execution a service is
requested but not provided within the requisite time limit then, as soon as the time limit is
reached, the availability property will be deemed to have been violated.

Note that even though time-limited availability can be characterised as a trace property, it still
cannot be enforced by an execution monitor. An execution monitor, by definition, can only
block actions and cannot force the target system to perform an action.

Information flow properties, such as confidentiality and some flavours of integrity, represent
yet a further class of property: they are not trace properties, nor are they availability
properties. We can characterise an availability failure with respect to a given execution if we
assume a god-like ability to the possible future unfoldings of the execution. In this case we
can determine that a certain action will never be available. More realistically, if we assume a
detailed understanding of the construction of the system we may be able to determine that,
having reached a certain state, it will never be able to execute a certain action.

For information flow properties, even the ability to foresee the future is insufficient to
characterise a failure given only the state of the target system. Information flow properties are
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characteristics of the set of possible system behaviours, not of individual behaviours. To
establish whether a system will maintain confidentiality we must look at the set of all its
possible behaviours and establish whether this set as a whole has certain characteristics. An
information flow property can be formulated as a predicate over the space of processes or
alternatively as a predicate over the power set of the set of traces (as opposed to a predicate
over the set of traces).

To make this clearer, consider a simple example: consider a system that takes in sensitive
plaintext and outputs this encrypted with a one-time-pad over an open channel. This will be
perfectly secure as long as the system really does implement a one-time-pad, i.e., is able to
generate any of the possible key streams (unpredictably and with equal probability). If the
system malfunctions in such a way that it will in fact only generate one of a small number of
the possible key streams, this would constitute a security failure but would not be detectable
by observing a single execution.

Again, it is useful to turn to the concept of an execution monitor. We cannot, in general, find
an execution monitor that can constrain a given system in such a way as to ensure that it will
satisfy a given information flow property. An information flow property has to be designed in
at the outset. To return to the stream cipher example, the algorithm has to be designed and
verified to be effectively indistinguishable from a random process. No execution monitor will
convert a flawed crypto device into a secure one.

For an information flow property, we typically cannot observe an individual run of the target
system and identify a point at which this behaviour has violated the property. Of course, we
can broaden our notion of the system to include the states of the adversary. If we do this then
a breach of confidentiality can be characterised by the appearance in the adversary’s state of
some sensitive data item. This is fine from a conceptual standpoint, and indeed is the
approach often taken in modelling and analysis (see Chapter 6, for example). In reality,
however, we cannot expect to have (direct) access to the adversary’s state of knowledge.

The history of cryptography is full of examples of security failures that went undetected. Of
course, if the security failure never manifests itself in the form of tangible damage to the
system then we could argue that it is irrelevant. The problem is that the damage may manifest
itself with an unbounded latency and possibly in some entirely different system. An additional
difficulty is that diagnosing the cause of the damage to the security breach may be difficult.
Thus, during World War II, the Germans seem never to have realised that the Enigma cipher
has been broken by the Allies. The Allies were always careful to ensure that alternative
explanations of U-boat sinking would be possible, for example by sending over a “fortuitous”
spotter plane.

The upshot of this discussion is that care must be taken in interpreting non-trace properties in
the standard conceptual model of dependable systems. The notion of a failure as usually used
in dependability fits most naturally with trace-based properties. Failures with respect to non-
trace properties can be characterised in a conceptual sense but may not be manifest from
observation of the target system. As a result, failures with respect to information flow
properties may, in principle, be hard to detect and so may propagate across system boundaries
and layers.

We see that properties can fall into a number of categories. They may be:

•  enforceable in the Schneider sense, e.g., a trace property,

•  not enforceable in the Schneider sense but a violation may be immediately and
locally detectable, e.g., a time-bounded availability property,

•  not enforceable and violations may not be immediately detectable, e.g., an
information flow property.

A property for which violations cannot be detected will not be enforceable.
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We see that there are strong theoretical as well as pragmatic reasons, in true dependability
style, to deploy a mixture of prevention (enforcement), detection, tolerance, recovery and
reconfiguration.

3.2  Security failures and their causes
In this section we discuss a number of security failures and their possible causes, i.e. faults.

3.2.1 Faults in the specification of the security goals
First we note that problems may arise in capturing the security requirement of the system in
question. We have to articulate the requirement as the security policy in some informal or,
better still, formal specification. Requirements capture is a notoriously slippery process and
mistakes may easily arise at this stage. Furthermore, even if our initial formulation of the
security requirements is perfectly accurate, requirements creep and evolution of the threat
environment, etc., may render our initial formulation inappropriate over time.

It may also be that certain goals are in conflict: i.e., cannot be (fully) satisfied simultaneously.
For example, the requirement to maintain patient privacy may conflict with the requirement to
make medical information available for research purposes. The requirement for anonymity of
sperm and egg donors runs counter to the right-to-know of the offspring. It may also be that
security goals conflict with non-security goals. Thus, for example, the requirement to keep a
patient’s records confidential may conflict (in certain circumstances) with the requirement to
do everything possible to ensure the life and health of the patient.

We therefore have a class of security failures due to inaccurate capture of the security
requirements. This of course applies equally to non-security requirements.

3.2.2 Faults in the specification of the security rules
Let us suppose that we have succeeded in formulating the security goals in such a way that
they do accurately capture the security requirements. We discuss now the ways in which
failures with respect to these goals may occur.

Firstly we note that it may be that the rules as specified, both technical and socio-technical,
fail to imply the goals. This may arise in a number of ways:

•  The rules, social and technical, may be incomplete.

•  The rules may be inconsistent or ambiguous.

•  Mistakes may be made in the analysis of the logical consequences of a given rule
set.

In general, security goals must be enforced by a mixture of technical and social mechanisms.
Whether or not the security goals are upheld will depend on the behaviour of the users as well
as that of the technical system. To some extent, user behaviour can be constrained by
technical means: namely those user actions that require the cooperation of the technical
system, accessing a sensitive file, for example.

However, many user actions do not require system cooperation. For example, a user may
disclose sensitive information orally to an unauthorised user, and so cannot be technically
constrained. These should be covered by duties and obligations: users are under an obligation
not to divulge sensitive information.

There is a further class of actions for which, though they do involve human-machine
interaction, it may be difficult to determine whether the action is in accordance with the goals.
For example, it is difficult by purely technical means to detect a violation of the obligation on
a clinician to maintain accurate patient records. The system will typically not be able to
determine that an update to the record is due or determine whether an update is correct.
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This is an example of a class of security failure referred to as an abuse of privilege: where a
goal is violated without any violation of the technical mechanisms. Abuses of privilege are
discussed further in Section 3.3.5.

The principle of least privilege seeks to minimise the scope for abuse of privilege by ensuring
that only the minimal privileges needed to fulfil duties and tasks are allocated. There are
theoretical and practical limits on the extent to which the security goals can be technically
enforced. We have noted in Section 3.1.3.5 some of the origins of the theoretical limits to the
extent to which security properties may be technically enforced. There are also practical
limitations on the extent to which it is sensible to enforce security goals. The more strictly the
principle of least privilege is enforced, the more unwieldy the rules and mechanisms become.
We need to balance the scope of technical enforcement mechanisms against the usability and
efficiency of the system.

We should note also that we may need to allow some flexibility in the rules in order to be able
to deal effectively with exceptional circumstances. It is difficult to foresee all possible
scenarios and hence difficult to formulate rules that will deal with all circumstances. We may
decide therefore that certain rules, even though they may be theoretically enforceable, are
better not enforced and just monitored. To take an example: we may have a rule stating that
patient records may only be viewed by the patient’s registered doctor or other clinicians with
the informed consent of the patient. In exceptional circumstances, e.g., the patient’s doctor is
unavailable and the patient is in a coma, it may be life-threatening to enforce this rule. It is
better to allow this rule to be over-ridden, with suitable warnings and subsequent audit.

Where it is not possible or feasible to technically enforce the policy we must impose social
rules (prohibitions, duties and obligations) on the users and deploy social enforcement
mechanisms: accountability, responsibility, etc., to coerce the human users into obeying these
social rules. Thus, spot checks might be made on patient records to try to spot anomalies.
Actions that violate a rule might not be blocked but might be flagged with a warning, logged
and subsequently checked.

3.2.3 Faults in the implementation of the technical rules
Let us suppose now that we have found an adequate formulation of the security rules, in the
sense of the discussion above. We must now consider the possibility of faults in the
implementation of these (abstractly specified) rules that could result in users being able to
acquire privileges or accesses to which they are not entitled.

This can happen in a number of ways:

•  Simple coding errors. The implemented rules do not match the abstractly specified
rules.

•  Failure to guarantee the integrity of the rules. For example if there is some way to
corrupt the access control matrix or access control lists.

•  Failure to properly maintain the rules.

•  Errors in mapping the rules onto the architecture, e.g., inadequate scope of the
access control mechanisms, for example if the security kernel is by-passable.

This last problem may ultimately be traceable back to flaws in the modelling and verification
process: overlooking or inaccurately modelling certain channels and access modes in the
architecture for example. Covert channels provide an example this.

3.2.4 Faults in the lower level technical mechanisms
The mechanisms for enforcing the security rules depend on services provided by lower level
security mechanisms: authentication, encryption, and so on. Thus our access control rules
might be perfectly formulated, implemented and maintained and yet, if the authentication
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mechanism fails, an intruder may be able to masquerade as a legitimate user and so usurp
their privileges. Similarly, faults in the cryptographic primitives may lead to faults in the
authentication protocols, and so forth.

3.2.5 Faults caused by deficiencies of formal models
Most faults discussed in the previous paragraphs can be traced back to an inadequate, or
incomplete design. One important reason that such faults are not avoided or removed during
system development is the fact that the mathematical models that we construct to perform
analysis are, necessarily, abstractions of reality. Despite our best efforts to make the models
faithful to the security relevant aspects of reality, there is always the danger of overlooking
something significant. Thus, models that abstract from time or from power consumption will
not identify attacks based on the adversary’s ability to observe these factors and draw
inferences from them.

This is a particularly virulent problem when trying to model information flows: any
observable may potentially be a source of flows. The choice of model of computation and
interaction is thus crucial. Even if we have correctly identified all possible variables we may
still have problems arising from non-determinism. If the sensitive activity can have any
influence on the resolution of non-determinism visible to the adversary this will give rise to a
potential information flow. It is extremely difficult to characterise the assertion that no such
influence is possible.

Closely related to this are the assumptions embedded in the architecture, i.e., assumptions
about what are the channels, interfaces, etc., of the system. If we overlook channels or
incorrectly model the flows (overlook covert channels for example) then our system may
harbour unknown information leaks.

3.2.6 Faults in the socio-technical mechanisms
Faults may also be present in the socio-technical mechanisms. Indeed, it may be argued that
most system security failures are due, at least in part, to human factors. Social engineering
attacks in which users are induced to reveal their passwords to an intruder provide prime
examples of this. Writing passwords on post-it notes stuck to the monitor is a classic security
failure. System support staff may fail to install up to date security patches.

Socio-technical rules and mechanisms should serve to constrain the behaviour of the human
users of the system to prevent such failures: careful selection of staff, good security training
and awareness programmes, effective audit trails and auditing procedures and so on. Even so,
such mechanisms may be inadequate or simply fail:

•  Duties and obligations may be incorrectly or inadequately formulated,

•  Users may fail to fulfil their duties and obligations.

3.3 Fault model
In this section, we progressively define a fault model that is appropriate for reasoning about
prevention and tolerance mechanisms aimed at ensuring system security. We first revisit the
notions of fault, error and failure introduced in Section 2.3 and then elaborate on potential
causes of security failures.

3.3.1 Causal chain of impairments
In Section 2.3, the notions of fault, error and failure were defined in terms of a causal chain:

•  fault: adjudged or hypothesised cause of an error;

•  error: that part of the system state that may lead to failure;
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•  failure: delivered service deviates from implementing the system function;

i.e., an error is the manifestation of a fault on the system state (where “state” is taken in a
broad behavioural sense) and a failure is the manifestation of an error on the service delivered
to the system user.

From an intrusion-detection/tolerance viewpoint, the need for three types of causally-related
impairments can be justified by the following remarks:

•  It is necessary to distinguish the internal detectable impairment (error) from the
causing impairment (fault) since there may be multiple causes (e.g., intentionally
malicious faults vs. accidental faults, cf. Section 2.3) that could give rise to the same
detectable impairment.

•  It is necessary to distinguish the internal detectable impairment (error) from the
external impairment (i.e., failure in the service delivered to a user) that intrusion-
tolerance techniques aim to prevent. The alternative viewpoint, in which any
detectable impairment is deemed to make the system “insecure” in some sense,
would make intrusion-tolerance an unattainable objective.

Due to the recursive definition of systems in terms of components, a failure at a given level of
decomposition may naturally be interpreted as a fault at the next upper level of
decomposition, thus leading to a hierarchical causal chain, as illustrated in Figure 7, where the
dotted lines represent a “system boundary”, at the considered level of decomposition or
abstraction.

(internal)
fault error failure

fault error failure

fault error failure

Figure 7 — Hierarchical causal chain of impairments

Ideally, the MAFTIA fault model should enable such a hierarchical interpretation.

3.3.2 Intrusion, attack and vulnerability
An intrusion is defined on Figure 4, page 7, to be a deliberately-malicious software-domain
operational fault that originates externally to the (technical) system boundaries.
Etymologically, the word “intrusion” comes from the Latin intrudere (to thrust in) but current
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usage covers both senses of “illegal penetration” and “unwelcome act”. Even a malicious
interaction fault perpetrated by an insider can thus be classed as an intrusion since the intent is
to carry out an operation on some resource that is unwanted by the owner of that resource.

A possible alternative to “intrusion” would be the word “attack”. However, it would seem that
both terms are necessary, but for different concepts. A system can be attacked (either from the
outside or the inside) without any degree of success. In this case, the attack exists, but the
mechanisms that protect the system or resource targeted by the attack are sufficiently
efficacious to prevent intrusion. An attack is thus an intrusion attempt and an intrusion results
from an attack that has been (at least partially) successful.

In fact, there are two underlying causes of any intrusion (Figure 8):

1. A malicious act or attack that attempts to exploit a weakness in the system,

2. At least one weakness, flaw or vulnerability.

Note that vulnerabilities may be introduced during development of the system, or during
operation. Furthermore, such faults can be introduced accidentally or deliberately, with or
without malicious intent.

vulnerability

intrusion error failure

attack

hacker

hacker,
designer

or operator

Figure 8 — Intrusion as a composite fault

This is a similar situation to that of externally-induced physical faults: a heavy ion
approaching the system from outside is like an attack. The aim of shielding is to prevent the
heavy ion from penetrating the system. If the shielding is insufficient, a fault will occur (e.g.,
a latch-up). Mechanisms can be implemented inside the system to tolerate such externally-
induced faults. Since we are essentially concerned with techniques aimed at providing
security guarantees in spite of imperfect “shielding” of the considered system, we will later
refer to such techniques as intrusion-tolerance techniques, which aim to tolerate the fact that
vulnerabilities have been successfully exploited by an attacker (who is, ipso facto, an
intruder).

Typical examples of intrusions interpreted in terms of vulnerabilities and attacks are:

1. An outsider penetrating a system by guessing a user password: the vulnerability lies in the
configuration of the system, with a poor choice of password (too short, or susceptible to a
dictionary attack).

2. An insider abusing his privilege (i.e., a misfeasance): the vulnerability lies in the
specification or the design of the (socio-technical) system (violation of the principle of
least privilege, inadequate vetting of key personnel).

3. An outsider using “social engineering”, e.g., bribery, to cause an insider to carry out a
misfeasance on his behalf: the vulnerability is the presence of a bribable insider, which in
turn is due to inadequate design of the (socio-technical) system (inadequate vetting of key
personnel).
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4. A denial-of-service attack by request overload (e.g., the February 2000 DDoS4 attacks of
Web sites): the vulnerability lies partly in the very requirements of the system since it is
contradictory to require a system to be completely open to all well-intended users and
closed to malicious users. This particular type of attack also exploits design or
configuration faults in the many Internet-connected hosts that were penetrated to insert
the zombie daemons required to mount a coordinated distributed attack [Garber 2000]. A
third vulnerability, which prevents effective countermeasures from being launched,
resides in a design fault on the part of Internet service providers not implementing
ingress/egress filtering (which would enable the originating IP source address to be
traced).

From the above, it is therefore clear that, according to the adopted viewpoint, at least three
fault types must be taken into account when reasoning about possible causes of errors that
could lead to a security failure:

attack – a malicious interaction fault, through which an attacker aims to deliberately
violate one or more security properties; an intrusion attempt.

vulnerability – a fault created during development of the system, or during operation,
that could be exploited to create an intrusion.

intrusion – a malicious, externally-induced fault resulting from an attack that has been
successful in exploiting a vulnerability.

Vulnerabilities are the primordial faults existing inside the components, in particular design or
configuration faults (e.g., coding faults allowing program stack overflow, files with root
setuid in Unix, naïve passwords, unprotected TCP/IP ports). Note, however, that a successful
attacker might purposely introduce a vulnerability (in the form of malicious logic, see below)
as a step in his overall plan of attack.

Attacks may be viewed either at the level of human activity of the attacker, or at the level of
the resulting technical activity that is observable within the considered computer system.

attack (human) – a malicious human interaction fault whereby an attacker aims to
deliberately violate one or more security properties.

attack (technical) – a malicious technical interaction fault aiming to exploit a
vulnerability as a step towards achieving the final aim of the attacker.

Attacks (in the technical sense) are malicious interaction faults that attempt to activate one or
more vulnerabilities (e.g., port scans, email viruses, malicious Java applets or ActiveX
controls). An attack that successfully activates a vulnerability causes an intrusion. This further
step towards failure is normally characterised by an erroneous state in the system that may
take several forms (e.g., an unauthorised privileged account with telnet access, a system file
with undue access permissions for the attacker). Such erroneous states may be corrected or
masked by intrusion tolerance (see Chapter 4) but if nothing is done to process the errors
resulting from the intrusion, failure of one or more security properties will probably occur.

We will only qualify the human/technical nature of attacks when necessary; in the absence of
qualification, we consider “attack” in its technical sense. Attacker is always taken in its
human sense, i.e., the malicious person or organization at the origin of attacks. When a
technical attack is perpetrated on behalf of the attacker by some piece of code (including
malicious logic as discussed in Section 3.3.3 below), we refer to such code as an attack agent.

                                                       
4 DDoS: Distributed Denial of Service.
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3.3.3 Malicious logic
Malicious logic refers to internal, deliberately malicious faults. Such faults may be introduced
either during system development, or while the system is in operation [Landwehr et al. 1994].
These faults include the following:

logic bomb – malicious logic that remains dormant in the host system till a certain time
or an event occurs, or certain conditions are met, and then deletes files, slows
down or crashes the host system, etc.

zombie – malicious logic that can be triggered by an attacker in order to mount a
coordinated attack.

Trojan horse – malicious logic performing, or able to perform, an illegitimate action
while giving the impression of being legitimate; the illegitimate action can be the
disclosure or modification of information (attack against confidentiality or
integrity) or a logic bomb.

trapdoor – malicious logic that provides a means of circumventing access control
mechanisms.

virus – malicious logic that replicates itself and joins another program (system or
application) when it is executed, thereby turning into a Trojan horse; a virus can
carry a logic bomb.

worm – malicious logic that replicates itself and propagates without the users being
aware of it; a worm can also carry a logic bomb.

Monitoring programs, such as network sniffers, can also be considered as malicious logic
when they have been inserted illegally.

In the definition of Trojan horse is hidden another notion concerning the mode of action of the
malicious logic. Often the Trojan horse is a sort of “subversive agent” for attacking the
confidentiality or integrity of its host (note that an illegally installed sniffer is a similar sort of
subversive agent). However, the important concept behind “Trojan horse” is that of being
hidden in a program that the unsuspecting user believes to be legitimate.

Malicious logic can be divided into intentionally installed vulnerabilities (e.g., a trapdoor) and
attack agents. The latter might be classified according to the following dimensions:

•  propagation: self-propagating (i.e., as in virus or worm); no propagation (one-off
result of an intrusion);

•  trigger conditions: continuously activated (e.g., Trojan horse); serendipitous
activation by unsuspecting victim (e.g., Trojan horse); other conditions (specific
time, input value, etc.) (i.e., a bomb or a zombie);

•  target of attack: local (e.g., a bomb or a Trojan horse) or distant (i.e., a zombie);

•  aim of attack: disclosure (confidentiality); alteration (integrity), denial of service
(availability).

3.3.4 Intrusion propagation
Let us now return to the notion of a hierarchical causal chain of impairments as represented
by Figure 7, page 30. A security failure at one level of decomposition of the system may be
interpreted as an intrusion at the next upper level. For example, the failure of an
authentication and authorisation mechanism to prevent system penetration by a malicious user
is clearly an intrusion as seen from the containing system, in this case, the system to which
access is being mediated (Figure 9). The containing system might now detect and recover
from any resulting errors (e.g., abnormal behaviour), and thereby prevent a security failure at
its level. If it is unsuccessful in this, then the next upper containing system may view the
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lower-level security failure as an intrusion, and so on. Another example is a buffer overflow
in a program: at the second level, the operating system may or may not prevent its own failure
(depending on what rights the failed program has), and at the third level, a distributed system
may or may not be able to tolerate the failure of an entire node.

human
mistake

error failure

error failure

intrusion error failure
human
malice

error failure

vulnerability

attack

intrusion error failure

administration system

social system

authentication
& authorisation

system

“exploits”

“causes”

“is interpreted as”

Relations

Figure 9 — Attack, vulnerability and intrusion in a
hierarchical causal chain

Moreover, depending on the adopted viewpoint at a given level, the intrusion may also be
viewed as an attack, as the installation of a vulnerability, or as an attack agent. Indeed, the
intrusion may manifest itself as a further attack (the attacker directly exploits his successful
attack in order to proceed towards his final goal); by the creation of new vulnerabilities (e.g.,
a system file with undue access permissions for the attacker, or malicious logic creating a
trapdoor) or by the insertion of malicious logic that can act as an agent for the attacker
sometime in the future (e.g., a zombie).

Figure 9 also traces back the causal chain through the failures of two other “systems”:

•  The vulnerability in the authentication system is due to the failure of the
administration system to prevent the administrator from creating the vulnerability.

•  The attack that exploited the vulnerability in the authentication system is due to the
failure of the social system to deter the attacker from attacking.

3.3.5 Theft and abuse of privilege
In Section 3.3.2, we referred loosely to attackers as being either “outsiders” or “insiders”.
What exactly is the distinction between the two?

In common parlance, an insider is “a person within a society, organisation, etc. or a person
privy to a secret, especially when using it to gain advantage” [OMED 1992].

The first part of this definition can be interpreted in terms of the rights of the considered
person. A person has a right on a specified object within the system if and only if he is
authorised to perform a specified operation on that object — a right is thus an object-
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operation pair. The set of rights of the considered person is that person’s privilege. An
outsider might thus be defined as a person who has no privilege, i.e., no rights on any object
in the system. Inversely, an insider is thus any individual who has some privilege, i.e., some
rights on objects in the system.

Consider now the case of an “open” system, such as a public web server. Such systems grant
to all users at least read access rights on certain objects within the system so, with the above
definitions, all users would be considered as insiders. The very notion of an outsider, as
defined above, is only relevant for closed systems.

An alternative distinction is thus necessary for open systems. The second part of the
dictionary definition of an insider relates both to the knowledge of the considered person and
the illegal use of this knowledge5. The distinction between outsider and insider must thus be
made in terms of the types of intrusion that can be perpetrated by the considered person:

theft of privilege: an unauthorised increase in privilege, i.e., a change in the privilege
of a user that is not permitted by the system’s access control policy.

abuse of privilege: a misfeasance, i.e., an improper use of authorised operations.

These two notions are illustrated by Figure 10, which considers a subset of the universe of
object-operation pairs of the considered system, rather than the complete system, and the
current privileges of two users (a and b).

Figure 10 — Outsider (user a) vs. insider (user b) with respect to domain D

In Figure 10, user a is currently an outsider with respect to a given domain 

† 

D  of object-
operation pairs since his privilege does not intersect that domain. User a can only act within
domain 

† 

D  by stealing a privilege beyond his current privilege. User b is an insider with
respect to domain 

† 

D  but an outsider with respect to sub-domain 

† 

D - B. User b  can thus
perpetrate both sorts of intrusion on domain 

† 

D : an abuse of privilege within 

† 

D« B or a theft

                                                       
5 The relationship between knowledge and right needs to be explored further, especially in terms of

concepts such as the need to know and the principle of least privilege.

A: privilege
of user a

D: an object-operation
domain

B: privilege
of user b

universe of object-operation pairs
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of privilege within 

† 

D - B. With respect to a given domain of object-operation pairs, we can
thus define outsider and insider as follows:

outsider: a human user not authorised to perform any of a set of specified operations on
a set of specified objects, i.e., a user whose (current) privilege does not intersect
the considered domain of object-operation pairs.

insider: a human user authorised to perform some of a set of specified operations on a
set of specified objects, i.e., a user whose (current) privilege intersects the
considered domain of object-operation pairs.

3.3.6 Intrusion containment regions
In this section, we introduce the notion of an intrusion containment region by analogy with
the notion of a fault containment region, which has proven useful as a concept when tolerating
accidental faults (see, for example, [Smith 1986]).

A fault containment region (FCR) can be defined as: a set of components that is considered to
fail (a) as an atomic unit, and (b) in a statistically independent way with respect to other such
FCRs. Then, with the following assumptions:

A1: the behaviour of a faulty FCR is unrestricted6;

A2: there are a bounded number of faulty FCRs in the considered fault-tolerant system;

it is possible to define formal fault-tolerance properties (e.g., agreement) for the fault-free
FCRs, but faulty FCRs are disregarded since, according to assumption A1, their behaviour is
unrestricted.

When defining the correctness of a mechanism designed to tolerate intrusions, a similar
restriction to fault-free components must apply since no assumptions can be made about what
an intruder or a corrupted component can or cannot do.

An intrusion-tolerant system is aimed at guaranteeing certain security properties, despite the
fact that some components of the system might be compromised, by either corrupt system
administrators or corrupt users. Consider now that users (and administrators) of the
considered computer system access the latter by means of an “access point”, i.e., a terminal or
a workstation (Figure 11).

                                                       
6 In practice, there is always some assumption about what a faulty FCR is not allowed to do in the

sense that it should not be able to change the structure of the considered fault-tolerant system. For
example, in Byzantine agreement, a disloyal general is only allowed to change messages (in
arbitrary ways), but is not allowed to kill his colleagues, or to create clones of himself to falsify the
majority.
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Figure 11 — Corrupt vs. non-corrupt access points and users

If an access point has been corrupted (e.g., by a Trojan horse that logs or modifies
confidential inputs or outputs) then it is clear that the user of that access point cannot be given
any security guarantees (case of users E and I in Figure 11).7 Also, it is of no interest to give a
security guarantee to a corrupt user, even if his access point is non-corrupt (case of user F in
Figure 11). Indeed, from the security viewpoint, a user (or an administrator) and his
corresponding access point constitute a single “intrusion containment region”: it is of no
import to the rest of the system whether a user or his access point is corrupt.

Consequently, it is clear that security guarantees can be given only with respect to a set of
non-corrupt access point intrusion containment regions, e.g., access points A, B, C, D, G and
H in Figure 11. For non-corrupt users of non-corrupt access points, an intrusion-tolerant
system should be able to provide guarantees about the confidentiality, integrity and
availability of the data owned (or, equivalently, the service purchased) by those users, despite
the fact that there are (a certain number of) corrupt components, administrators or users of the
system. A similar concept is introduced in [Pfitzmann & Waidner 1994], where security
properties are specified in terms of a subset of access points that together constitute the
interface to the concerned parties, i.e., those parties who mutually trust each other but distrust
other parties (other users, access points or system components).

It might be possible to generalise this notion of an intrusion containment domain beyond that
of just access points. Indeed, an intrusion containment domain may be interpreted in terms of
the set of rights that an intruder has managed to obtain, i.e., his current privilege domain (cf.
Section 3.3.3). The intruder’s current privilege domain defines the extent of control that he
has over the system. The intruder may maliciously misuse any object-operation pair within

                                                       
7 The protection of an access point against intrusions should thus be under the responsibility of the

corresponding user: a reckless user cannot be given any security guarantees.



Malicious- and Accidental- Fault Tolerance for Internet Applications

38

that privilege domain, so it would be wise to consider the whole domain as corrupt, if of
course one were able to dynamically infer what constitutes that domain at a given instant.

A specific case may be the “uses” relation within operating systems, which would lead to a
general directed graph of dependencies between components, generalising the equivalence
relation leading to FCRs. For example, all servers using an operating system with a security
kernel fail if the kernel fails, but not vice versa, and a user program fails if a server that it uses
fails, but not vice versa. While cryptographic and distributed-system measures often work
with a model of intrusion containment regions, a general directed graph may be more suited to
modelling typical “intrusion-detection” measures.

3.4 Security methods
Equating attack (in both the human and technical senses), vulnerability and intrusion with
fault, and applying the definitions given in Section 2.5, we can obtain a priori sixteen
methods for ensuring or assessing security (Table 8). However, not all of these sixteen
methods are distinguishable.

We in fact obtain ten distinguishable methods, which are presented in the following
subsections.

Table 8 — Classification of security methods

Attack
(human sense)

Attack
(technical sense)

Vulnerability Intrusion

Prevention (how to
prevent occurrence
or introduction of…)

deterrence, laws,
social pressure,
secret service…

firewalls,
authentication,
authorisation…

semi-formal and
formal specification,
rigorous design and
management…

= attack & vulnerability
prevention & removal

Tolerance (how to
deliver correct
service in the
presence of…)

= vulnerability prevention & removal,
intrusion tolerance

= attack prevention &
removal,
intrusion tolerance

error detection &
recovery, fault
masking, intrusion
detection, fault
handling

Removal (how to
reduce number or
severity of…)

physical
countermeasures,
capture of attacker

preventive &
corrective
maintenance aimed
at removal of attack
agents (i.e., some
forms of malicious
logic)

1. formal proof,
model-checking,
inspection, test…
2. preventive &
corrective
maintenance,
including security
patches

Õ attack & vulnerability
removal

Forecasting (how to
estimate present
number, future
incidence, likely
consequences of…)

intelligence
gathering, threat
assessment…

assessment of
presence of latent
attack agents,
potential
consequences of
their activation

assessment of:
presence of
vulnerabilities,
exploitation difficulty,
potential
consequences…

= vulnerability & attack
forecasting

3.4.1 Fault prevention
In Section 2.5, fault prevention is defined as “how to prevent the occurrence or introduction of
faults”. Equating attack, vulnerability and intrusion with fault, we obtain three clearly
distinguishable sets of fault-prevention methods:

attack prevention (human sense): how to prevent the occurrence of human attacks;
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With attack taken in the human sense, this includes deterrence measures such as
social pressure, laws and their enforcement.

attack prevention (technical sense): how to prevent the occurrence of technical
attacks;

When attack is taken in its technical sense, attack prevention consists of the
introduction of mechanisms such as authentication, authorisation and firewalls,
which “prevent” attacks in that they “push back” the attacks to the level of the
additional barriers these mechanisms introduce.

vulnerability prevention: how to prevent the occurrence or introduction of
vulnerabilities;

This includes measures going from semi-formal and formal specification,
rigorous design and system management procedures, up to and including user
education (e.g., choice of passwords).

Note that intrusion prevention (as opposed to intrusion tolerance) can be seen as the
combined application of attack and vulnerability prevention, as well as attack and
vulnerability removal, i.e., the classic security techniques.

3.4.2 Fault tolerance
In Section 2.5, fault tolerance is defined as “how to deliver correct service in the presence of
faults”. Equating attack, vulnerability and intrusion with fault does not lead to clearly
distinguishable sets of methods. First, since an intrusion cannot occur in the absence of
vulnerability, intrusion tolerance and vulnerability tolerance are equivalent in the sense that
tolerance of an intrusion implies tolerance of the vulnerability or vulnerabilities that were
exploited to perpetrate the intrusion. To conform to current usage, we will refer to intrusion
tolerance. Note that the presence of vulnerabilities can be tolerated if no attacks occur, so
attack prevention and removal are also a form of vulnerability tolerance.

Similarly, attack tolerance does not define a separate set of methods beyond vulnerability
prevention and removal, and intrusion tolerance. Hence, we obtain one distinguishable set of
fault-tolerance methods:

intrusion tolerance: how to provide correct service in the presence of intrusions;

Admitting that attack, vulnerability and intrusion prevention measures are always
imperfect, intrusion tolerance aims to ensure that the considered system provides
security guarantees in spite of partially successful attacks. Techniques for
achieving intrusion tolerance will be addressed in Chapter 4.

3.4.3 Fault removal
In Section 2.5, fault removal is defined as “how to reduce the number or severity of faults”.
Fault prevention and fault removal are sometimes grouped together under the term “fault
avoidance”. Fault removal may occur either before or after a system is put into operation. In
the latter case, it is called maintenance (note that the factor that distinguishes maintenance
from fault tolerance is that the former requires participation of an external agent).

Equating attack, vulnerability and intrusion with fault leads to the following interpretations of
fault removal.

Attack removal can be considered during system operation, for both human and technical
attacks, through the notion of countermeasures. In both cases, it is not so much the attack that
is removed, but the entity perpetrating the attack, i.e., the (human) attacker or the (technical)
attack agent.

For vulnerabilities, removal consists of verification procedures aimed at identifying and
removing flaws that could be exploited by an attacker, including maintenance procedures
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aimed at removing vulnerabilities identified during system operation (corrective maintenance)
or in similar systems (preventive maintenance).

We have no meaningful separable interpretation of fault removal in terms of intrusions other
than preventive and corrective maintenance procedures aimed at removing attack agents and
vulnerabilities resulting from intrusions.

Hence, we obtain three distinguishable sets of fault-removal methods:

attack removal (human sense): how to reduce the number or severity of human
attacks;

This covers human countermeasure techniques aimed directly against the
attacker

attack removal (technical sense): how to reduce the number or severity of technical
attacks;

This covers maintenance actions aimed at removing malicious logic acting, or
capable of acting, as attack agents.

vulnerability removal: how to reduce the number or severity of vulnerabilities;

During system development, this covers verification procedures such as formal
proof, model-checking and testing, specifically aimed at identifying flaws that
could be exploited by an attacker. Identified flaws may then be removed by
correcting the code.

During system operation, vulnerability removal corresponds to preventive and
corrective maintenance actions such as applying a security patch, withdrawing a
given service, changing a password, removal of malicious logic implementing a
trapdoor, etc.

3.4.4 Fault forecasting
In Section 2.5, fault forecasting is defined as “how to estimate the present number, the future
incidence, and the likely consequences of faults”. Equating attack, vulnerability and intrusion
with fault, we obtain three clearly distinguishable sets of fault-forecasting methods:

attack forecasting (human sense): how to estimate the present number, the future
incidence and the likely consequences of (human) attacks.

This includes intelligence gathering, threat assessment and attack warning

attack forecasting (technical sense): how to estimate the present number, the future
incidence and the likely consequences of (technical) attacks.

This corresponds to an assessment of the present number of latent attack agents,
and the future incidence and the likely consequences of their activation.

vulnerability forecasting: how to estimate the present number, the future incidence
and the likely consequences of vulnerabilities.

This includes the gathering of statistics about the current state of knowledge
regarding system flaws, and the difficulties that an attacker would have to
overcome in order to take advantage of them.

Security risk analysis can be viewed as a combination of all three forecasting methods.

Finally, note that the assessment of the effectiveness of intrusion-detection mechanisms also
falls into the category of fault forecasting methods (similarly to coverage assessment in
traditional-fault tolerance). However, the “faults” whose incidence is being forecasted are the
design faults in such detection mechanisms rather than the intrusions they aim to detect.
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Chapter 4 Intrusion tolerance

This chapter focuses on one of the eight security methods identified in Section 3.4, namely
intrusion tolerance, defined as “how to provide a service capable of implementing the system
function despite intrusions” and aimed at ensuring that a system provides guarantees of
security despite partially successful attacks.

Before doing so, however, Section 4.1 first discusses what is meant by intrusion detection. In
Section 4.2, we give a model for describing intrusion-detection systems. Then, in Section 4.3,
we discuss intrusion tolerance in the light of the core dependability definitions relative to fault
tolerance given in Section 2.5.2. Finally, in Section 4.4, we define a general framework that
integrates the notions of intrusion detection and intrusion tolerance.

4.1 Intrusion detection
In Section 2.3, a fault is defined to be the adjudged or hypothesised cause of an error, the
latter being that part of the system state that may cause a subsequent failure. A security failure
will occur if a system fails to deliver a secure service, and the role of an intrusion detection
system is to detect errors before they lead to security failures. But what is the nature of a
security failure?

Section 3.1 contains a discussion of the role of a security policy in defining security
requirements. We consider a security policy to be made up of goals and rules. The goals
define the security requirements of the system, and thus a violation of the goals constitutes a
security failure. The security rules serve to support the security goals. A violation of a security
rule might not of itself constitute a security failure, but will typically put the system in a state
that is deemed to be more liable to failure, and thus corresponds to an error.

The goals of a security policy are stated in terms of the basic security properties of
confidentiality, integrity and availability, and thus, the definition of security failure is
naturally derived from loss of confidentiality, integrity or availability (as defined by the goals
of the considered security policy). However, there is currently no agreed definition of what
might constitute an error from the security viewpoint, although we consider the violation of a
security rule to result in an erroneous state, as discussed above. Despite this lack of
consensus, current literature refers to “intrusion detection” which, from the dependability
concept viewpoint, might lead one to equate intrusion with “error”, rather than “fault”8. In
reality, current literature uses the term “intrusion detection” to cover a spectrum of
techniques. To paraphrase [Halme & Bauer]: “Intrusion detection may be accomplished:

•  after the fact (as in post-mortem audit analysis),

•  in near real-time (supporting SSO9 intervention or interaction with the intruder, such
as a network trace-back to point of origin), or

•  in real time (in support of automated countermeasures).”

                                                       
8 Note, however, that it is also quite common in the literature on tolerance of physical faults to find

the term “fault detection” used on one of two ways:

a) As a clumsy synonym for “error detection” (since detection of an error implies, rather indirectly
and perhaps falsely, the “detection” of its cause)

b) As the designation of a mechanism that seeks out (dormant) faults by running a test procedure to
activate them as errors that can be detected by an error detection mechanism.

9 SSO: System Security Officer.
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From the dependability concept viewpoint, these three types of intrusion detection can be
interpreted respectively as:

•  off-line fault diagnosis (as part of curative maintenance);

•  error detection and on-line fault diagnosis (to an operator-assisted fault handling
facility);

•  error detection (as a preliminary to automatic error recovery), or error detection and
on-line fault diagnosis (as a preliminary to automatic fault handling).

Further confusion is introduced by the opposition in [Halme & Bauer] between a “manually
reviewed IDS”10 (called a passive IDS in [Debar et al. 1999]), and “Intrusion Countermeasure
Equipment (ICE)” and an “autonomously acting IDS” (sic) (called an active IDS in [Debar et
al. 1999]), which clearly go beyond just detection. The notion that an IDS might include more
than just detection, but also the actions triggered by detection, also appears in the Common
Intrusion Detection Framework (CIDF) [Porras et al.]. This framework, which we will re-visit
later in this chapter, defines the notion of “response units”, that take inputs from other CIDF
components to carry out “some kind of action … [on their behalf, including] … such things as
killing processes, resetting connections, altering file permissions, etc.”.

Here, we will prefer to make a distinction between detection per se and response, be it manual
or automatic. This concurs with the definition given in [NSA 1998], where intrusion detection
is defined as: “Pertaining to techniques which attempt to detect intrusion into a computer or
network by observation of actions, security logs, or audit data. Detection of break-ins or
attempts either manually or via software expert systems that operate on logs or other
information available on the network.” This is also in line with the charter of the Intrusion
Detection Working Group (IDWG) of the Internet Engineering Task Force (IETF) [IETF],
which speaks of “intrusion detection and response systems”.

To conform to the spirit of the NSA definition above, we will avoid using “intrusion
detection” in the limited sense of “error detection” but extend it to include some degree of
fault diagnosis. To this end, we adopt the following definitions:

intrusion detection: concerns the set of practices and mechanisms used towards
detecting errors that may lead to security failure, and/or diagnosing attacks.

intrusion-detection system: an implementation of the practices and mechanisms of
intrusion detection.

Our definition of intrusion detection draws attention to the fact that we are particularly
interested in detecting errors that may lead to security failure since the ultimate aim of such a
system is to provide inputs:

•  to a system administrator (an SSO) who might carry out further diagnosis and
initiate litigation and/or appropriate countermeasures to avert security failures, or

•  to an automatic countermeasure mechanism to avert security failures, i.e., to tolerate
intrusions.

However, the definition also covers a second important aim of intrusion detection, that of
gathering information about new forms of attack, for which new defences will need to be
devised.

4.2 Intrusion-detection model
We present a model of intrusion-detection systems according to function, derived as a
refinement of the Common Intrusion Detection Framework (CIDF) [Porras et al.]. When

                                                       
10 IDS: Intrusion Detection System.
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possible, we use the language of the CIDF although some refinement has been necessary. We
additionally address issues of channels between components.

The CIDF classifies components of an intrusion-detection system into four different
categories. We recap briefly:

•  An e-box, or event generator, is a component that gathers event information.

•  An a-box, or analysis box, analyses event information toward detecting errors and
diagnosing faults. The output of an analysis box may provide information to other
analysis boxes.

•  A d-box, or database, provides persistence for the intrusion-detection system. This
facility will take on different forms depending upon use. It may be a complex
relational database or it may be a simple text file.

•  An r-box, or response box, is the portion of the system that acts upon the results of
analysis. According to [Porras et al.], automated responses may include killing
processes, resetting connections, or activating degraded service modes. In line with
the discussion in Section 4.1, we do not consider the r-box to be part of intrusion
detection per se, but as part of the set of facilities providing error recovery, fault
isolation and system reconfiguration in a general intrusion-tolerance framework.

Figure 12 presents a refinement of the CIDF model, which explicitly identifies sub-
components of the e-box, and the fact that there can be multiple e-, a- and d-boxes.
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Event
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Sensor

Event
Analyzer

Target

Sensor

Event
Analyser

Activity

e-box

r-box

a-box

Event
Database
Event

Database
Event

Database

d-box

Figure 12 — Intrusion-detection system components

We note that the decomposition may not correspond to particular physical boundaries.
Vulnerabilities, and hence targets, exist at several different abstraction and implementation
layers so that our model must be applicable at several layers. The boundaries between
components are determined by the level of abstraction with which we view the system:
people, LANs, machines, processes, memory pages, etc.

The intention is that the several different sensors may generate information stemming from
the same root cause, passing it to a cascading array of analysis components in a topologically
arbitrary manner (Figure 13).
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Figure 13 — Cascaded intrusion-detection topology

4.2.1 Event generator
We subdivide what is termed an e-box in the language of the CIDF, into three components
(activity, target, sensor). We have found it necessary to create this subdivision for three
reasons [Alessandri 2001]:

•  To model an in vivo system, we need to consider activity in the system.

•  To model the real-world reality of imperfect observation, we need to separate the
target of an attack from the sensors used to detect the attack.

•  To allow several different sensor boxes for a single target.

The activity is the collection of base causes of events in the system. This includes normal user
activity, system administration, malicious activity, and spurious events (power failure, system
and network crashes, background radiation in the universe, etc.).

The target is the component that we are trying to monitor. We assume that the activity has
some channel to the target.

The sensor is the component of the system collecting raw data (e.g., a sniffer or an audit log).
There are two kinds of sensor: sensors that observe the effect of the activity on the target (e.g.,
host-based sensors), and sensors that seek to observe activity independently of the target (e.g.,
network-based sensors). Thus, the activity can influence the sensors either directly or
indirectly.

The role of the sensor is merely to record raw events (no specifically intrusion-detection logic
exists in this component). We note that the sensor may very well be imperfect in the sense
that it may not sense all raw events of interest. In certain settings, such as a web daemon
recording requests to a (target) script, the sensor is capable of observing all events relative to
the target, so it has the possibility of being very reliable (essentially perfect).
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Experience has shown that vulnerabilities exist in all places and range through all levels from
low-level hardware to high-level social interactions and procedures. Moreover, the
exploitation of a vulnerability (i.e., the intrusion) at one level may be concealed using
vulnerabilities provided by another.

Naturally enough, different sensors focus on different views of vulnerabilities and their
exploitation. Various sensors have different deployment and computational costs and
requirements while the different views offer different advantages and possibilities. Optimal
deployment is a series of balanced tradeoffs:

•  Sensitivity: volume of information vs. analysability

•  Deployment: ease vs. completeness

•  User rights: privacy vs. visibility

Detection of a violation of the security policy defined at the application level with a network-
based sensor would be computationally infeasible. On the other hand, global deployment of
application-based sensors may prove too expensive (it is difficult to equip an application with
intrusion-detection hooks without the application source code). A network-based IDS on a
gigabit per second network link offers an expansive view but will not be able to carry out an
in-depth analysis. A host integrity check offers an in-depth but localised view.

Many applications and services that are possible conduits for intrusion offer adequate logging
and audit information, either directly or indirectly, to perform intrusion detection. Thus, while
it would be unrealistic to expect intrusion-detection logic to be included at all layers, it is still
possible to provide intrusion detection for a range of layers.

Ultimately, a complete view of the system is required and all layers of the system must be
directly or indirectly visible to the IDS. Some redundant combination of logging, specialised
micro-analyser, mid-level and high-level sensors would provide the needed observations.

4.2.2 Event analysis
The event analysis boxes successively transform, filter, normalise, and correlate data, adding
semantic relevance and reducing volume at each stage. A single event analysis box may take
its input from several different producers (both from sensor boxes and other event analysis
boxes) and may feed its output to several different consumers in a topologically arbitrary
manner (cf. Figure 13).

As with sensors, analysis boxes have differing needs and costs so that deployment is a matter
of balanced tradeoffs. A high-level reasoning engine requiring significant computational
resources per received event would be quickly overwhelmed by a network scan reported as
single events. On the other hand, a high-level reasoning engine may not be able to allot the
resources needed to perform subtle correlation.

Further constraints on the distribution and topology of analysis boxes are imposed by the
localisation of implementations. An analysis box checking the logs of a web server may be
required by practicality to be near the web server in terms of management structures while
there may also be the need for a global view of web servers for complete analysis.

These constraints are further complicated by the frequent need to combine the observations
coming from sources under different management chains.

4.2.3 Event database
An event database provides persistence for the IDS. This may be for use in off-line error
detection, in intrusion analysis, or as evidence justifying response. This facility has a multi-
layered structure similar to that of the entire system. At the lowest level, it may take the form
of a simple file. At the highest level, it may be a distributed relational database. We assume
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that the database may be interactively queried either by the event analysis boxes or by the
response boxes that directly require its contents.

An important aspect of the event database that is not addressed in Figure 12 arises from the
need to view data with varying degrees of resolution. The use of a single database for an
entire enterprise would present serious scalability and privacy issues. The use of multiple
databases raises the issues of how to access them and how to meaningfully collate the data
obtained from each. This aspect mirrors an identical one for event analysis.

4.2.4 Channels between intrusion-detection components
Channels between components are of course susceptible to failure. They must thus provide
integrity (resistance to message alteration and deletion), authenticity (resistance to message
insertion), and quality of service (guaranteed delivery or observable failure). Confidentiality
features may be required in settings where logging information could prove dangerously
useful to an attacker. This includes, for instance, anonymity (e.g., ensure confidentiality of the
identity of a person who has root access) and privacy (e.g., ensure confidentiality of personal
data).

The mechanisms for such provisions vary with the channels themselves: a TCB (trusted
computing base) may offer all of these for IPC (inter-process communication) whereas
network connections may need to resort to redundancy and cryptography.

There are several concerns to be addressed:

•  An attacker can interrupt the entire channel.

•  An attacker can place a smart filter on the channel that hides only the attacker’s
activities.

•  An attacker can interfere with or hijack the entire channel.

•  The channel can be eavesdropped upon.

These problems can be addressed in different ways with different costs:

•  A heartbeat event ensures that the channel is alive.

•  A cryptographic hash chain added to the event stream prevents event deletion.

•  Authentication codes prevent event insertion, and event stream hijacking.

•  Encryption can prevent the eavesdropping of events.

Such techniques apply not only to transmission but also to storage. Should the logs be stored
in a potentially vulnerable location, we can use well-known cryptographic techniques that
provide so-called “forward” secrecy [Menezes et al. 1996, Schneier 1996].

4.2.5 Towards an intrusion-tolerant IDS
Chapter 6 of [Dacier 2002] contains a proposal for building an intrusion-tolerant IDS using
these mechanisms and techniques, and a prototype demonstrator has been constructed
according to these principles. The demonstrator uses redundant sensor networks and event
analysers that communicate via secure channels using Byzantine agreement protocols. A
heartbeat monitoring mechanism and an immortaliser component provide additional
protection against malicious attacks designed to crash particular components of the IDS.

4.3 Interpretation of core fault-tolerance concepts
We now consider intrusions in the broader context of intrusion-tolerance. We re-examine the
notion of fault-tolerance as defined in the core dependability concepts (Section 2.5.2). Those
concepts make a distinction between: (a) error detection and error handling, aimed at
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preventing errors from leading to (catastrophic) failure, and (b) fault handling, aimed at
preventing the recurrence of errors.

4.3.1 Error detection
Error detection is a necessary preliminary to achieving rollback or rollforward recovery, or
compensation by switchover, but is not strictly necessary if compensation is carried out
systematically (i.e., fault masking). However, irrespective of the error handling method
employed (if any), error detection is necessary if subsequent fault handling or curative
maintenance actions are to be undertaken.

By definition, error-detection (and error handling) techniques need to be applied to all errors
irrespectively of the specific faults that caused them. In particular, the malicious or non-
malicious nature of faults is not of concern for at least two reasons:

•  Determination of whether or not the cause of an error is malicious is not a
computational matter (it is a concern rather of psychology).

•  We would not want to suppress the notification of a potentially dangerous error
merely because the adjudged cause was not deemed malicious (thus not an
intrusion).

This does not mean however that the design of an error-detection technique is independent of
the hypothesised fault model. For example, to detect errors caused by internal physical faults,
it suffices to introduce some kind of physically redundant checker hardware (ideally, itself
self-checking). Classic examples of such redundancy are: duplication and comparison, parity
checking, watchdog timers, etc. The physical redundancy in effect provides an independent
reference as to what the behaviour of the monitored hardware should be.

The intrusion-detection community commonly identifies two categories of error-detection
techniques that differ according to the type of reference with which the observed system
behaviour is compared [Halme & Bauer] (see Figure 14)11:

•  Anomaly-detection techniques, which compare observed activity against normal
usage profiles (in [Debar et al. 1999], these are called behaviour-based methods).

•  Misuse-detection techniques, which check for known undesired activity profiles (in
[Debar et al. 1999], these are called knowledge-based methods).

Here “anomaly” is definitely being used in the traditional sense of “error”, whereas “misuse”
has an element of fault diagnosis since error patterns related to previously identified intrusions
are being searched for.

                                                       
11 [Halme & Bauer] actually also identifies “hybrid misuse/anomaly detection” and “continuous

system health monitoring”. The former is clearly not a separate form of detection and the latter can
be viewed as a form of anomaly detection, since it applies to “suspicious changes in system-wide
activity measures and system resource usage”.
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Figure 14 — Detection paradigms

The rules contained within the system’s security policy (cf. Section 3.1) provide an important
reference regarding what observed activities should be considered as erroneous from a
security viewpoint12. The rules embodied in the policy may cover both permitted activities
(i.e., a normal activity reference) and prohibited activities (i.e., an abnormal activity
reference).

Another important error-detection reference, one that is particularly pertinent to MAFTIA, is
that provided by subsystems using techniques such as secret-sharing, fragmentation-
redundancy-scattering and other trust distribution mechanisms, usually (but not necessarily)
implemented with sufficient redundancy to allow intrusion-tolerance through masking (see
Section 4.3.2 below). Such techniques provide mutual references of “normal” activity, and
should thus be considered as important sources of error-detection reports.

Error-detection techniques are rarely perfect. In traditional fault-tolerance, the degree of
perfection of an error-detection mechanism is measured in terms of error-detection coverage
(the probability of an error being detected) and latency (the time until an error is detected).
Only in rare cases is one interested by the level of “incorrect detections” or “false suspicions”
since the monitored component and the error detector are often considered lumped together as
a single “self-checking component”. However, in intrusion detection, it is necessary to
separately consider the various possibilities for incorrect decisions (see Figure 15):

false negative – the event corresponding to the incorrect decision not to rate an activity
as being erroneous (i.e., no alarm raised due to poor coverage, due to either
insufficient asymptotic coverage or excessive latency); also called a “miss”.

false positive – the event corresponding to the incorrect decision to rate an activity as
being erroneous; also called a “false alarm”.

The corresponding favourable events are:

true negative – the event corresponding to the correct decision not to rate an activity as
being erroneous.

true positive – the event corresponding to the correct decision to rate an activity as
being erroneous.

                                                       
12 Note, however, that according to our definition (cf. Section 3.1), a security failure only occurs when

there is a violation of one or more of the security goals specified by the security policy.
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Figure 15 — IDS events

Given that the distributions of normal versus abnormal activity will usually overlap, an IDS
needs to be tuned in order to make a compromise between the rates of false negatives and
false positives (see Figure 16).

Figure 16 — Compromise between false negatives and false positives

[Dacier 2002] describes various techniques that can be used to reduce the rate of false
negatives and false positives, and thus improve the quality of the error reports generated by an
IDS. These include using data mining techniques to filter out events with a common root
cause, and using diverse error detection mechanisms to increase the proportion of errors
detected and the accuracy with which they are detected.

Finally, it is important to note that often while looking for a thing one looks for evidence, side
effects, precursors, conduits, and habitats of the thing. As such, the definition of error
detection would naturally include vulnerability scanning and configuration checking. In
Section 2.5.2, such built-in self-test procedures are termed pre-emptive error detection. In the
case considered here, an error signal produced by such a background audit procedure would
be considered as an input to fault handling and preventive maintenance, rather than as a
trigger for automatic error handling.
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4.3.2 Error handling
The core dependability concepts of Section 2.5.2 distinguish three forms of error handling:

•  Rollback recovery: state transformation is carried out by bringing the system back
to a previously occupied state, for which a copy (a recovery point, or “checkpoint”)
has been previously saved.

•  Rollforward recovery: state transformation is carried out by finding a new state
from which the system can operate.

•  Compensation: state transformation is carried out by exploiting redundancy in the
data representing the erroneous state.

In the context of error handling for intrusion-tolerance, examples of each form include:

•  Rollback recovery:

- Operating system re-installation

- TCP/IP connection resets

- System reboots and process re-initialisation

•  Rollforward recovery:

- In threshold-cryptography, replacement of compromised key shares

- Putting the system into a diminished operation, presumably safe, mode

•  Compensation:

- Voting mechanisms

- Fragmentation-Redundancy-Scattering

- Sensor correlation

In MAFTIA, the main focus is on compensation techniques for error handling, in particular
those listed above, which carry out systematic masking of intrusions, whereby error
compensation is applied even in the absence of intrusions.

4.3.3 Fault handling
In the core dependability concepts, fault handling covers the set of techniques aimed at
preventing faults from being re-activated. Whereas error handling is aimed at averting
imminent failure, fault handling aims to attack the underlying causes, whether or not error
handling was successful, or even attempted. To take a medical analogy: whereas error
detection and error handling are concerned with ensuring emergency life support and
relieving disease symptoms, fault handling is concerned with curing the disease, or with
providing an autopsy.

Section 2.5.2 identifies three fault-handling primitives: fault diagnosis, fault isolation, system
reconfiguration and re-initialisation.

4.3.3.1 Fault diagnosis

Fault diagnosis is concerned with identifying the type and locations of faults that need to be
isolated before carrying out system reconfiguration or initiating corrective maintenance. This
includes faults that are judged to be the cause of detected errors, and faults that could cause
problems in the future.

In the case of error signals produced by pre-emptive error-detection mechanisms such as
vulnerability-scanners and configuration-checkers, diagnosis is immediate. However, for error



Conceptual Model and Architecture of MAFTIA

51

signals from concurrent error-detection mechanisms, it is first necessary to decide whether the
underlying cause was an intrusion or an accidental fault.

If the case of intrusions, according to the composite fault model of Section 3.3.2, fault
diagnosis can be further decomposed into:

•  Intrusion diagnosis, i.e., trying to assess the degree of success of the intruder in
terms of system corruption.

•  Vulnerability diagnosis, i.e., trying to understand the channels through which the
intrusion took place so that corrective maintenance can be carried out.

•  Attack diagnosis, i.e., finding out who or what organisation is responsible for the
attack in order that appropriate litigation or retaliation may be initiated.

It should be noted that most currently available intrusion-detection systems do not include any
fault diagnosis mechanisms. The explicit recognition of the fact that misuses and anomalies
are indeed errors that can be caused by any sort of fault is an important result of the MAFTIA
project. Indeed, a good intrusion-detection system requires such a fault diagnosis mechanism
to minimise the rate of false alarms caused by errors due to other classes of faults (e.g., design
faults in the reference for defining “misuse” or “anomalies”, accidental interaction faults such
as mistyping a password, etc.).The data-mining technique described in Chapter 3 of [Dacier
2002] provides a good example of such a fault diagnosis mechanism.

4.3.3.2 Fault isolation

In traditional fault-tolerance, fault isolation is needed, say, to prevent a faulty transmitter from
babbling over a shared bus or to prevent a faulty sensor from continuing to add faulty
readings to a pool of redundant measurements. That is, we want to make sure that the source
of the detected error(s) is prevented from producing further error(s).

In terms of intrusions, this might involve:

•  Blocking traffic from an intrusion containment region that is diagnosed as corrupt,
by, for example, changing the settings of firewalls or routers

•  Removing a corrupted file from the system

or, with reference to the root vulnerability/attack causes:

•  Uninstalling software versions with newly-found vulnerabilities

•  Arresting the attacker.

4.3.3.3 System reconfiguration and re-initialisation

The occurrence of faults and the consequent isolation of faulty components naturally leads to
a decrease in the number of available fault-free resources, so, in traditional fault-tolerant
systems, reconfiguration is sometimes envisaged to effectively re-deploy those resources. As
already stated in the core dependability concepts, this may mean abandoning some tasks or
services (thus resulting in degraded operation) or re-distributing them among the remaining
resources.

Reconfiguration of the system allows a possibly degraded service to be delivered while
corrective maintenance is carried out on faulty resources. After corrective maintenance,
further reconfiguration allows repaired or replacement resources to be re-deployed

In an intrusion-tolerant system possible reconfiguration actions include:

•  Software downgrades or upgrades (using appropriate versions are available on-line
for this to be done automatically)

•  Changing a voting threshold (say from 3-out-of-5 voting to 2-out-of-3 voting) after
two corrupt servers have been isolated, so that a further intrusion can be masked
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•  Deployment of countermeasures including more probes and traps (honey-pots) to
gather further information about the intruder, and so assist in attack diagnosis.

4.3.4 Corrective maintenance
Fault handling is usually followed by corrective maintenance, e.g., with the aid of a system
security officer or administrator. Such manual intervention is the essential difference between
corrective maintenance and (automatic) fault handling. Actions pertaining to corrective
maintenance from a security viewpoint include:

•  Removing vulnerabilities believed to have contributed to the intrusion:

- Software revision and upgrade

- Deployment of security patches

•  Attacker rehabilitation.

4.4 Integrated intrusion-detection/tolerance framework
In this section we examine the relationship between intrusion detection, as defined in Sections
4.1 and 4.2, and intrusion tolerance, as examined in Section 4.3. In particular, we will
investigate:

•  How intrusion detection helps when building an intrusion-tolerant system

•  How an intrusion-detection system can itself be made tolerant to faults, including
intrusions.

We show how the ideas derived from the core dependability concepts and those from work
done by the intrusion-detection community might fit together in a single integrated
framework.

Our integrated intrusion-detection/tolerance framework is illustrated on Figure 17.
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Figure 17 — Integrated intrusion-tolerance framework

The central part of the figure shows a generic MAFTIA component or (sub-)system. There
may be many such components within a MAFTIA system, implementing either end-user
application functionality or application support services. An administration (sub-)system
manages all such components within a single management domain. Here, we consider only
the security aspects of system administration within a single management domain. The
security-administration component in this diagram spans over all the layers of the system and,
in particular, over those comprising the application. The security-administration component is
not specific to an individual application but may provide its service to several different
applications within the considered management domain.

Components may be layered. The figure shows a component offering some service over an
application-programming interface (API) to some higher-level component, using the
service(s) offered by possible lower level components. In this case, taking inspiration from the
“idealised fault-tolerant component” of [Anderson & Lee 1981], these top and bottom
interfaces include “insecurity signals” aimed at informing the service user that the service has
been (or might have been) compromised. However, such insecurity signals may not be
provided by all generic components, at least not autonomously, since a decision to raise such
an insecurity signal may involve some system-wide analysis (by the security administration
sub-system).

According to the interpretation of the core fault-tolerance concepts in Section 4.3, we further
describe Figure 17 in terms of error detection and error handling, fault handling and corrective
maintenance.

4.4.1 Error detection and error handling
We distinguish two basic generic component types:

•  Intrusion-intolerant components
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•  Intrusion-tolerant components

Both component types are potential sources of error-detection information (in the form of
event and error reports). However, intrusion-tolerant components are also capable of acting
autonomously to implement error recovery.

Error and event reports can be analysed within a given context to confirm or deny suspected
errors (cf. Section 4.2.2). Confirmed errors may or may not trigger automatic recovery. In
either case, they are reported to the fault handling facilities, which may carry out further
analysis toward understanding the root causes of detected errors (fault diagnosis), in order to
act thereon (fault isolation and system reconfiguration) and/or report to the system security
officer.

4.4.1.1 Intrusion-intolerant components

A central theme of the integrated framework is that any application, service, or layer can be
monitored in order to detect deviation from the security policy’s description of its correct
function (error detection). This monitoring can either be done internally or externally, as
portrayed by the “internal sensor” and “external sensor” elements of Figure 17. Monitored
components also need to provide context information, which is needed both for error
detection (is the suspected error actually an error) and for fault diagnosis (towards accurate
classification of faults causing the detected errors).

Internally-monitored components

Placement of error detection and context provision facilities within a component offers
several advantages over externally positioned error-detection facilities.

The migration of data between the layers of an application often has a significant
computational overhead. By placing error-detection facilities within the components
comprising the layers, we eliminate the need to mirror the computation, thereby reducing
computational expense, automatically distributing the load, and increasing the accuracy of the
view.

While it would be unrealistic to expect all developers to provide specific intrusion-detection
features in their code, the use of error-detection facilities is quite common. Many languages
provide library facilities to ensure data and process integrity (called assertions). Most code
includes some debugging features in the form of logging.

Externally-monitored components

While externally placed error detection and context provision facilities incur greater
computational costs and suffer poorer accuracy than their internal counterparts, they are often
easier to deploy.

We clarify with an example. Knowledge-based network-based intrusion-detection systems
must reconstruct the networking stacks of several different machines looking for signatures
(indications) of known attacks. The fact that they must attempt to mirror the process of
reconstructing the network stacks of many different machines has several negative
implications:

•  They have very high computational requirements.

•  They must be placed at a location where they are able to observe all traffic that
needs to be monitored; this may create networking bottlenecks.

•  They have views that may not be identical to the machines they attempt to mirror
(packets arriving out of order, dropped packets, etc.).

•  Ideally, they should be able to model different implementations of the network
stacks (that have different behaviours).
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•  If a system has to monitor encrypted traffic, it must have a set of virtual master keys
(this is potentially dangerous as it is a single point of confidentiality failure for the
network) and have the capacity to perform the necessary decryption (which is
certainly expensive).

On the other hand, network-based intrusion-detection systems are comparatively easy to
deploy and maintain.

4.4.1.2 Intrusion-tolerant components

The second important type of generic MAFTIA components consists of those that provide
internal recovery to errors caused by intrusions. Such components may implement fault-
tolerance using either error detection and (rollback or rollforward) recovery, or intrusion-
masking (cf. Section 4.3.2). In MAFTIA, particular attention had been given to the latter
variety of intrusion-tolerance, e.g., using the FRS technique, which can compensate errors due
to both accidental faults and intrusions [Fraga & Powell 1985]. Possible applications of this
approach include services based on trustworthy trusted third parties such as those described in
[Abghour et al. 2001, Cachin 2001a]:

•  Certification authority and directory service

•  Fair exchange TTPs

•  Notary service

•  Authentication service

•  Authorisation service

or indeed, sub-components of an intrusion-detection service (e.g., intrusion-tolerant sensor
correlation and event analysis).

Whether masking or detection-and-recovery is used, detected errors and other relevant events
are analysed and reported to the fault handling facilities. Intrusion-tolerant components are
thus a particular kind of internally-monitored components.

4.4.2 Fault handling
The fault-handling facilities include the means for diagnosing and isolating faults (including
intrusions, attacks and vulnerabilities), and for automatic or manual system reconfiguration
(cf. Section 4.3.3). Whereas it seems feasible to internally implement some degree of fault
diagnosis and isolation within the considered component (this would be necessary if the
component were to be capable of autonomously raising an insecurity signal), it is expected
that it will often be necessary to take into account a more system-wide view. Moreover, such
a system-wide view seems essential to carry out meaningful system reconfiguration. For these
reasons, Figure 17 shows the fault diagnosis and isolation mechanisms distributed across the
generic component(s) and the security administration system, whereas the system
reconfiguration mechanisms are internal to the latter, which may possibly be distributed.

From the viewpoint of intrusion-detection, the IDS (as defined in Section 4.1, i.e., excluding
the so-called response mechanisms) within this integrated framework consists of the set of
external and internal sensors, the error-detection mechanisms of any intrusion-tolerant
components, and the event analysis and fault diagnosis mechanisms that signal intruder
reports to a system security officer. These are shown in dark grey on Figure 17.

4.4.3 Corrective maintenance
In many cases, manual intervention by the SSO will be needed to complete automatic fault-
handling. Since the number of false positives in practical intrusion detection systems is non-
negligible, the SSO will usually have to be involved to judge between true and false positives.
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If he decides that an alarm is a true positive, he may trigger further countermeasures over and
above any that have been triggered automatically. If the number of false positives is judged to
be too high, then the SSO can carry out corrective maintenance on the intrusion detection
system by, for example, adding appropriate filtering rules. Similarly, if the SSO realises that
the IDS is failing to detect attacks and intrusions for some reason, i.e., the rate of false
negatives is too high, then additional sensors and correlation rules can be added. See Chapters
3 and 4 of [Dacier 2002] for more details of the techniques developed by MAFTIA for
improving the quality of intrusion detection by reducing the number of false positives and
false negatives.

4.4.4 Relationship between error detection, fault handling, and
corrective maintenance

The following diagram, Figure 18, is intended to clarify the relationship between error
detection by the IDS, fault handling by the SSO, and corrective maintenance of the IDS. The
target system shown in Figure 18 could represent a single component or sub-system, or an
entire computer network that is being monitored by an IDS. The error reports generated by the
sensors and event analysers of the IDS are passed to the security administration system and
the SSO for fault diagnosis.  Based on the results of this diagnosis, the SSO determines
whether the appropriate response is to do nothing (e.g., because the observed attack is not
successful), or to reconfigure the IDS to improve the quality of the error detection
(e.g., because the rate of false positives is too high), or to reconfigure the target system,
(e.g., to remove a vulnerability that has been detected). In this respect, the combination of the
SSO and the security administration system partially fulfil the role of the r-box in the CIDF
model (although as noted earlier in Section 4.2, we do not consider the r-box to be part of
intrusion detection per se, but rather part of the set of facilities providing error recovery, fault
isolation and system reconfiguration in a general intrusion-tolerance framework).

Sensor

Event
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Sensor

Event
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Sensor

Event
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Figure 18 — Role of SSO in error detection, fault diagnosis and corrective maintenance
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4.4.5 An illustrative example
As an example of how intrusion-detection and intrusion-tolerance fit together, Figure 19
shows a much simplified, unfolded interpretation of Figure 17.

Figure 19 — Relationship between
intrusion-detection and intrusion-tolerance

Figure 19 shows some typical elements of a MAFTIA system, including both intrusion-
intolerant and intrusion-tolerant components, for both application and system services
(authorisation and intrusion-detection are viewed here as system services).

In this example, the system contains a fault-tolerant web server and fault-tolerant
authorisation server, both capable of masking intrusions and signalling any detected errors.
There is also a fault-intolerant web server, monitored by an external sensor.

All error-detection sources can produce intrusion-detection (ID) error reports. For clarity, only
those due to corrupt components are shown. The ID error reports are sent through a chain of
two ID event analysers (cf. Figure 13, page 44) to an ID event database and to the system
security officer. Certain components specific to the IDS (one of the two event analysers and
the ID event database) are also fault-tolerant, and are thus capable of being themselves
sources of ID error-reports.

For simplicity, the example does not distinguish event analysers aimed at confirming
suspected errors from those aimed at diagnosing faults. Nor does the figure portray any
automatic reconfiguration logic, i.e., it is assumed in this example that any reconfiguration
would be carried out under manual control of the SSO.
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Chapter 5 Architectural overview

The purpose of this chapter is to introduce the basic models and assumptions underlying the
design of the MAFTIA architecture, and then to present an overview of the architecture itself
from various perspectives. The discussion of models and assumptions is of course informed
by the previous material in Chapters 3 and 4, which explains security notions of intrusion,
attack, and vulnerability in terms of the more classical dependability concepts of faults,
failures and errors, and then outlines the basic MAFTIA approach towards building an
intrusion-tolerant architecture through the use of intrusion-detection systems and intrusion-
tolerant components. This chapter details both the functional aspects of the architecture, and
the constructs aimed at achieving intrusion tolerance. It concludes with some examples of
how the architecture will be used to build intrusion-tolerant services.

5.1 On the nature of trust
The adjectives “trusted” and “trustworthy” are central to many arguments about the
dependability of a system. In the security literature, the terms are often used inconsistently.
For example, Anderson [Anderson 2001] points to differing usages of the notions of “trust”:

•  U.S. National Security Agency (NSA) definition: “A trusted system or component is
one whose failure can break the security policy, while a trustworthy system or
component is one that won’t fail”.

•  U.K. military view: a trusted system element is one “whose integrity cannot be
assured by external observation of its behaviour while in operation”.

•  Other definitions which have to do with whether a particular system is approved by
an authority: “A trusted system won’t get me fired if it’s hacked on my watch”, or
even “a system we can insure”.

The MAFTIA notions of “trust” and “trustworthiness” are a generalization of the NSA
notions: they point to generic properties and not just security; and there is a well-defined
relationship between them — in that sense, they relate strongly to the words “dependence”
and “dependability”.

As already noted in Annex B to Chapter 2, the term trustworthiness is essentially synonymous
to dependability, but is often the preferred term when the focus is on external faults such as
attacks.

Trust is the reliance put by a component, on some properties (functional and/or non-
functional) of another component, subsystem or system13.

In consequence, a trusted component has a set of properties that are relied upon by another
component (or components), i.e., there is an accepted dependence. If A trusts B, then A
accepts that a violation in those properties of B might compromise the correct operation of A.
Note that trust is not absolute: the degree of trust placed by A on B is expressed by the set of
properties, functional and non-functional, which A trusts in B (for example, that a smart card
gives a correct signature for every input, with a certain MTTF for a given level of threat).

Observe that those properties of B trusted by A might not correspond quantitatively or
qualitatively to B’s actual properties. Thus, A should only trust B to the extent of B’s
trustworthiness. In other words, trust, the belief that B is dependable, should be placed in the
measure of B’s dependability.

                                                       
13 We will just use ‘component’ henceforth, for simplicity. Likewise, this relation can be generalised to

collections of components.
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The trustworthiness of a component is, not surprisingly, a measure of the extent to which a
component, subsystem or system, meets a set of properties (functional and/or non-functional).
The trustworthiness of a component can be derived from its construction, and/or evaluated as
appropriate. For example, a smart card used to implement the example above should actually
meet or exceed the required properties.

The definitions above have obvious (and desirable) consequences for the design of intrusion
tolerant systems: trust is not absolute, it may have several degrees, quantitatively or
qualitatively speaking; it is related not only with security-related properties but with any
properties (e.g., timeliness); trust and trustworthiness lead to complementary aspects of the
design and verification process. In other words, when A trusts B, A assumes something about
B. The trustworthiness of B measures the coverage of that assumption.

In fact, one can reason separately about trust and trustworthiness. One can define chains or
layers of trust, make formal statements about them, and validate this process. To complement
this line of reasoning, one should also ensure that the components involved in the above-
mentioned process are endowed with the necessary trustworthiness. This alternative process is
concerned with the design and verification of new components, or the
verification/certification of existing ones (e.g., COTS). The two terms, trust and
trustworthiness, establish a separation of concerns on the failure modes: of the higher level
algorithms or assertions (e.g., authentication/authorization logics); and of the infrastructure
running them (e.g., processes/servers/communications).

Let us analyze how to build justified trust under this model. Assume that the trustworthiness
of component C is defined in terms of some predicate P that holds with a coverage Pr.
Another component B should thus trust C to the exact extent of C possessing P  with a
probability Pr, not more, not less.  So, although there can be failures consistent with the
limited trustworthiness of C (i.e., that Pr < 1), these are “normal”, and who/whatever depends
on C, like B, should be aware of that fact, and expect it.

However, it can happen that B trusts C to a greater extent than it should: trust was placed on C
to an extent greater than its trustworthiness, perhaps due to an incorrect or negligent
perception of the latter. This is a mistake of who/whatever uses C, which can lead to
unexpected failures.

Finally, it can happen that the claim made about the trustworthiness of C is wrong (about
predicate P, or its coverage Pr, or both).  The component fails in worse, earlier, or more
frequent modes than stated in the claim made about its resilience. In this case, even if B trusts
C to the extent of satisfying predicate P with probability Pr, there can still be unexpected
failures. However, this time, the failures will be due to a mistake of whoever architected/built
the component C.

The intrusion-tolerance strategies adopted within MAFTIA rely upon these notions. The
assertion ‘trust on a trusted component’ inspires the following guidelines for the construction
of modular fault tolerance in complex systems: components are trusted to the extent of their
trustworthiness; there is separation of concerns between what to do with the trust placed on a
component (e.g., building fault-tolerant algorithms), and how to achieve or show its
trustworthiness (e.g., constructing the component). The practical use of these guidelines is
exemplified in later sections.

5.2 Models and assumptions

5.2.1 Failure assumptions
A crucial aspect of any fault-tolerant architecture is the fault model upon which the system
architecture is conceived, and component interactions are defined. The fault model conditions
the correctness analysis, both in the value and time domains, and dictates crucial aspects of
system configuration, such as the placement and choice of components, level of redundancy,
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types of algorithms, and so forth. A system fault model is built on assumptions about the way
system components fail. Classically, these assumptions fall into essentially two kinds:
controlled failure assumptions, and arbitrary failure assumptions.

Controlled failure assumptions specify qualitative and quantitative bounds on component
failures. For example, the failure assumptions may specify that components only have timing
failures, and that no more than f  components fail during an interval of reference.
Alternatively, they can admit value failures, but not allow components to spontaneously
generate or forge messages, nor impersonate, collude with, or send conflicting information to
other components. This approach is realistic, since it represents very well how common
systems work under the presence of accidental faults, failing in a benign manner most of the
time. It can be extrapolated to malicious faults, by assuming that they are qualitatively and
quantitatively limited. However, it is traditionally difficult to model the behaviour of a hacker,
so we have a problem of coverage that does not recommend this approach unless a solution
can be found.

Arbitrary failure assumptions ideally specify no qualitative or quantitative bounds on
component failures. Obviously, this should be understood in the context of a universe of
“possible” failures of the concerned operation mode of the component. For example, the
possible failure modes of interactions between components of a distributed system might be
limited to combinations of timeliness, form, meaning, and target of those interactions (let us
call them messages), and might not encompass the arbitrary cloning of system components. In
this context, an arbitrary failure means the capability of generating a message at any time,
with whatever syntax and semantics (form and meaning), and sending it to anywhere in the
system. Practical systems based on arbitrary failure assumptions must however specify
quantitative bounds on the number of failed components, or at least equate tradeoffs between
resilience of their solutions and the number of failures eventually produced [Babaõglu 1987].
Arbitrary failure assumptions are costly to handle, in terms of performance and complexity,
and thus are not compatible with the user requirements of the vast majority of today’s on-line
applications.

Hybrid assumptions combining both kinds of failure assumptions would be desirable. They
provide a known framework in dependable system design vis-à-vis accidental failures.
Generally, they consist of allocating different assumptions to different subsets or components
of the system, and have been used in a number of systems and protocols [Meyer & Pradhan
1987, Powell et al. 1988].

5.2.2 Composite fault model
With hybrid assumptions some parts of the system would be justifiably assumed to exhibit
fail-controlled behaviour, whilst the remainder of the system would still be allowed an
arbitrary behaviour. This would be advantageous in modular and distributed system
architectures such as MAFTIA.

However, such an approach is only feasible when the fault model is well-founded, that is, the
behaviour assumed for every single subset of the system can be modelled and/or enforced
with high coverage. As a matter of fact, a system normally fails by its weakest link, and naïve
assumptions about a component’s behaviour will be easy prey to hackers.

As we have discussed in Chapter 3, the impairments that may occur to a system, security-
wise, have to do with a wealth of causes, which range from internal faults (e.g.
vulnerabilities), to external, interaction faults (e.g., attacks), whose combination produces
faults that can directly lead to component failure (e.g., intrusion).

A first step towards our objective is the organisation of these diverse causes into a composite
fault model (cf. Figure 8, page 31), with a well-defined relationship between
attack/vulnerability/intrusion. Such a model allows us to modularise our approach to
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achieving dependability, by combining different techniques and methods tackling the different
classes of faults defined. Ten such security methods were defined in Section 3.4.

5.2.3 Enforcing hybrid failure assumptions
The second step is the enforcement of hybrid failure assumptions. A composite fault model
with hybrid failure assumptions is one where the presence and severity of vulnerabilities,
attacks and intrusions varies from component to component. There is a body of research,
starting with [Meyer & Pradhan 1987] on hybrid failure models that assume different failure
type distributions for different nodes. For instance, some nodes are assumed to behave
arbitrarily while others are assumed to fail only by crashing. The probabilistic foundation of
such distributions might be hard to sustain in the presence of malicious intelligence, unless
their behaviour is constrained in some manner. Our work might best be described as
architectural hybridization, in the line of works such as [Powell et al. 1988] and [Verissimo et
al. 1997], where failure assumptions are in fact enforced by the architecture and the
construction of the system components, and thus substantiated.

Consider a component or sub-system for which a given controlled failure assumption was
made. How can we achieve coverage of such an assumption, given the unpredictability of
attacks and the elusiveness of vulnerabilities?

The answer lies in the approach taken to the design, construction and/or configuration of the
component. Through the combined use of intrusion prevention techniques (i.e. attack and
vulnerability prevention and removal), and ultimately the implementation of internal
intrusion-tolerance mechanisms, we must justifiably achieve confidence that the component
behaves as assumed, failing in a controlled manner, i.e., that the component can be trusted (cf.
Section 5.1) because it is trustworthy. The combination of these techniques should be guided
by the composite fault model mentioned above (i.e., removing vulnerabilities that are matched
by attacks we cannot prevent; preventing or tolerating attacks on vulnerabilities we cannot
remove, etc.). The measure of this trust is the coverage of the controlled failure assumption.

Looking at the next higher level of abstraction — the level of the system — we are now ready
to implement our intrusion-tolerance mechanisms, using a mixture of arbitrary-failure
(fail-uncontrolled or non trusted) and fail-controlled (or trusted) components. However, our
task is made easier since the controlled failure modes of some components vis-à-vis malicious
faults restrict the system faults the component can produce. In fact we have performed a form
of fault prevention at the system level: some kinds of system faults are simply not produced.

5.2.4 Intrusion tolerance under hybrid failure assumptions
The approach outlined in the previous sections:

•  establishes a divide-and-conquer strategy for building modular fault-tolerant
systems, with regard to failure assumptions;

•  can be applied to achieve different behaviours in different components;

•  can be applied recursively at as many levels of abstraction as are found to be useful.

Consider the discussion of Section 5.1 on trust and trustworthiness as being synonyms of
dependence and dependability. Taking the dependability argument further, in MAFTIA we
trust components or subsystems (we will just use the word component henceforth) to the
extent of their trustworthiness, as perceived at the adequate instances: by the designer, tester,
reviewer, user (human or another component), etc.

That is, trustworthy components are components whose coverage has been justified, either by
argumentation concerning the techniques used in their implementation or through
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quantification by some attack and vulnerability forecasting methods14 (cf. Section 3.4), can
subsequently be used in the construction of fault-tolerant protocols under architectural hybrid
failure assumptions. In properly designed systems, the trust placed on a component should be
qualitatively and/or quantitatively commensurate to its trustworthiness. This is an innovative
aspect in MAFTIA that we explore in the following sections, and the fact that it is not yet
known very well how to provide quantitative arguments in the context of malicious fault
metrics, presents an opportunity, rather than a threat to this approach.

Note that the soundness of the approach does not depend on our making possibly naïve
assumptions about what a hacker can or cannot do to a component. Instead, we analyse and
break the attack/vulnerability/intrusion chain selectively, removing vulnerabilities that match
attacks we cannot prevent, preventing attacks that exploit vulnerabilities we cannot remove,
and/or finally tolerating any intrusions on the component that we cannot prevent with the
above methods.

This approach is explored in several ways within MAFTIA. In particular, it is our rationale for
implementing small trustworthy components (in the sense discussed in Section 5.1), which are
then trusted by other components. Such components are simple enough to be built and
plausibly shown to be correct. This allows us to construct implementations of fault-tolerant
protocols that are more efficient than protocol implementations that have to deal with truly
arbitrary assumptions, and more robust than designs that make controlled failure assumptions
without enforcing them.

There are three main instances of such trusted components that we describe in more detail in
the subsequent architecture overview (see Section 5.3.4). The first is based on a Java Card,
and is a local component designed to assist the crucial steps of the execution of services and
applications. The second is a distributed component (named Trusted Timely Computing
Base), based on appliance boards with private network adapters, which is designed to assist
crucial steps of the operation of middleware protocols.

We use the word “crucial” in both instances to stress the tolerance aspect: unlike prevention-
based approaches (e.g., classical Reference Monitors), the trusted component does not
mediate all accesses to resources and operations. In our approach, protocols run in an
untrusted environment, and local participants only trust interactions with the trusted
components (and only to the extent of their trustworthiness, as will become clear later on).

The local trusted component is used to certify certain operations, through public key
cryptography. It is a valuable assistant, for example, of protocols supporting the high-level
services of the middleware, such as the authorisation or transactional support services.

The distributed trusted component is used to assist group communications and group activity
protocols. It provides simple security functions (mainly secure IPC channels between itself
and any local component) and a distributed consensus function on simple facts of protocol
operation. It also provides time-related functions that will be discussed in the next sections.

Whereas these two instances could be best seen as low-level runtime support components, the
third instance concerns the recursive view of building macroscopic, distributed trusted
components in the middleware. Given a hostile environment, single components, including
networks, can be corrupted, and higher level components engaging in distributed activities
might benefit from trusting middleware components to provide a set of correct support
services, whose provision is built on distributed fault-tolerance mechanisms, for example
through agreement and replication amongst collections of participants in several hosts.

                                                       
14 Such quantification is currently beyond the state-of-the-art, and is not being addressed in MAFTIA.
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5.2.5 Arbitrary failure assumptions considered necessary
Notice that the hybrid failure approach, no matter how resilient, relies on the coverage of the
fail-controlled assumptions. Definitely, there will be a significant number of operations in the
kind of applications to be served by MAFTIA, whose value and/or criticality is such that the
risk of failure due to violation of these assumptions cannot be incurred.

In consequence, an important area of research being pursued is related with arbitrary-failure
resilient building blocks, namely communication protocols of the Byzantine class, which do
not make assumptions on the existence of trusted components or other fail-controlled
components. They reason in terms of admitting any behaviour from the participants, and
allow the corruption of a parameterisable number of participants, say f. The system works
correctly as long as there exist n>3f  participants.

These protocols do not make assumptions about timeliness either, and are in essence time-
free. This has implications on the operational aspects, which will be further discussed in the
next sections.

5.2.6 Synchrony models
Research in distributed systems algorithms has traditionally been based on one of two
canonical models: fully asynchronous and fully synchronous models [Verissimo et al. 2000].
In this section, we discuss the limitations of both models, in order to motivate the hybrid
approach that MAFTIA is taking.

Asynchronous models are time-free, that is, they are characterised by an absolute
independence of time, and distributed systems based on such models typically have the
following characteristics:

Pa 1 Unbounded or unknown processing delays

Pa 2 Unbounded or unknown message delivery delays

Pa 3 Unbounded or unknown rate of drift of local clocks

Pa 4 Unbounded or unknown difference of local clocks15

Asynchronous models obviously resist timing attacks, i.e., attacks on the timing assumptions
of the model, which are non-existent in this case. Because of this fact, they enjoy a resilience
that is not shared by synchronous models, and which is a crucial asset in the presence of
malicious faults. However, for some time, asynchronous models were not much considered in
the literature due to a belief that there could only be inefficient solutions to many interesting
problems, such as consensus or Byzantine agreement. In addition, fully asynchronous models
preclude the deterministic solution of those problems. “False” asynchronous algorithms have
been deployed over the years, exhibiting subtle but real failures, thanks to the inappropriate
use of timeouts in a supposedly time-free model.

Work in MAFTIA takes new approaches to this problem, showing innovative efficient
solutions through probabilistic asynchronous protocols [Cachin 2001b]. It does not matter that
such solutions are only probabilistic as long as the error probability can be made sufficiently
small for the applications in view (in particular smaller than the probability of hardware
faults, etc.).

However, because of their time-free nature, asynchronous models cannot solve timed
problems. In practice, many of the emerging applications we see today, particularly on the
Internet, have interactivity or mission-criticality requirements. Timeliness is part of the

                                                       
15 Pa3 and Pa4 are essentially equivalent but are listed for a better comparison with the synchronous

model characteristics listed below. Since a local clock in a time-free system is nothing more than a
sequence counter, clock synchronisation is also impossible in an asynchronous system.
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required attributes, either because of user-dictated quality-of-service requirements (e.g.,
network transaction servers, multimedia rendering, synchronised groupware, stock exchange
transaction servers), or because of safety constraints (e.g., air traffic control). In contrast to
asynchronous models (which simply have no notion of time) synchronous models allow
timeliness specifications. In this type of model, it is possible to solve all the typical hard
problems deterministically (e.g., consensus, atomic broadcast, clock synchronisation)
[Chandra & Toueg 1996]. Synchronous models have the following characteristics:

Ps 1 There exists a known bound for processing delays by non-faulty processors

Ps 2 There exists a known bound for message delivery delays between non-faulty
processors

Ps 3 There exists a known bound for the rate of drift of non-faulty local clocks

Ps 4 There exists a known bound for the difference among non-faulty local clocks

In consequence, such models solve timed problem specifications, one precondition for at least
a subset of the applications targeted in MAFTIA, for the reasons explained above. Imagine for
example the technical difficulty of implementing real-time stock exchange transactions on the
Internet, based on real-time quotes, and with temporal order between competitive requests, to
ensure market fairness.

However, synchronous models are fragile in terms of their coverage of timeliness assumptions
such as positioning of events in the timeline or determining execution durations. It is easy to
see that synchronous models are susceptible to timing attacks, since they make strong
assumptions about things happening on time. For example, algorithms based on messages
arriving by a certain time, or on reading the actual global time from a clock, or on securing
the temporal order of messages, may fail in dangerous ways if manipulated by an adversary
[Gong 1992]. In a synchronous setting, the difficulty of implementing real-time stock
exchange transactions over the Internet in the presence of malicious faults could become
insurmountable.

Work in MAFTIA takes the timed partially synchronous approach to this problem. The
intermediate synchrony model we follow provides a solution to the problems enumerated
above, essentially for three reasons: (i) it allows timeliness specifications; (ii) it admits failure
of those specifications; (iii) it provides timing failure detection, and if desired, timing fault
tolerance.

To summarise, a time-free approach is necessary when the criticality of operations is such that
an arbitrary failure assumptions model is needed to maximize coverage and prevent timing
attacks by resorting to an asynchronous model. However, this setting does not offer timeliness
guarantees and that would be the price to pay. The hybrid approach that we are taking in
MAFTIA, which we now discuss in more detail, attempts to improve on this situation.

5.2.7 Timed approach
Let us analyse a little more how timed algorithms can be attacked. Specifying timeout values
may be very difficult when protecting against arbitrary failures that may be caused by a
malicious attacker. It is usually much easier for an intruder to attack communication with a
server than to subvert the server itself. Even asynchronous systems with failure detectors
[Chandra & Toueg 1996] can easily be fooled into having inconsistent and wrong failure
suspicions about honest parties. This problem arises because the failure detector is built on the
assumption that the system will be stable for long enough periods. This assumption may
obviously fail against a malicious adversary. Two possible solutions present themselves:
either the failure detector is made to work properly in a malicious fault environment, or a
solution is devised that does not require failure detectors. We will address the latter in the next
section.
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As for the former, we adopt a partially synchronous model, enriched with the notion of a
timing failure detector. This is a stronger definition of detector than the crash failure detector.
However, the power of such a detector addresses our concerns about timeliness. We expect
our timed applications to be able to run in environments of uncertain synchrony, such as the
Internet. Thus, in spite of having a notion of timeliness (i.e., time bounds, deadlines, etc.),
they may not always be able to fulfil these requirements adequately. Consequently, we
assume that components can exhibit timing failures, i.e., they can violate timeliness
properties. This would only be dangerous if we were not able to detect them, otherwise we
can devise timing-fault tolerant protocols. Thus, we require our timing failure detector to be
resilient to malicious faults: it will not make mistakes even in the presence of intruders. This
addresses the concerns expressed at the beginning of this section.

The realisation of our model is called the Trusted Timely Computing Base (TTCB): an
architectural device working as an oracle performing timing failure detection, built in a way
so as to ensure detection is timely, accurate and complete [Verissimo et al. 2000], even in the
presence of malicious faults. The TTCB must be: distributed, for detection to work correctly
system-wide; synchronous, so that timing operations are accurate; and fail-controlled, to
provide well-defined behaviour in the presence of intrusions. In the context of the discussion
of Section 5.2.4, the TTCB is built as a distributed and synchronous trusted component, which
provides useful security-related functions alongside time-related functions, and is used to
support the construction and operation of fault-tolerant protocols following the timed
approach.

In a sense, a TTCB might sound similar to the very well known paradigm in security of a
Trusted Computing Base (TCB) [Abrams et al. 1995]. However, the objectives are radically
different. A TCB aims at fault prevention and ensures that the whole application state and
resources are tamper-proof. Furthermore, it is based on logical correctness and makes no
attempt to reason in terms of time. In contrast, a TTCB aims at fault tolerance: it simplifies
the task of application components, but most of the application code and state is in
unprotected space, and can be tampered with, requiring the use of redundancy so that the
whole application does not fail. In other words, a TTCB significantly reduces the part of the
system about which tamper-proofness claims need be made. It is an architectural artefact
supporting the construction and trusted execution of intrusion-tolerant protocols and
applications running under a partially synchronous model.

This type of hybrid fault model allowed us to devise a new Byzantine-resilient reliable
multicast protocol for asynchronous systems [Abrams et al. 1995]: we assume that the TTCB
can only fail by crashing, while the rest of the system can behave in a Byzantine way. By
relying on the services of the TTCB, the protocol exhibits excellent behaviour in terms of
time and message complexity when compared with more traditional Byzantine protocols.
Moreover, it only requires n ≥ f + 2 correct processes to tolerate f failures, instead of the usual
n ≥ 3f + 1.

5.2.8 Time-free approach
The time-free approach taken in MAFTIA adopts the asynchronous model. Of course,
asynchronous protocols cannot guarantee a bound on the overall response time of an
application, but they were never meant to. In general, an asynchronous model provides a
conceptually simple and nice framework for developing and reasoning about the correctness
of an algorithm, satisfying safety under any conditions, and providing liveness under certain
conditions, which in MAFTIA asynchronous protocols are defined in a probabilistic way.
This has some advantages for the design of secure distributed systems, which is one reason
for pursuing such a model in the context of MAFTIA. In fact, sometimes it is necessary and
worthwhile to sacrifice timeliness for resilience, for example for very critical operations (key
distribution, contract signing, etc.)
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In the asynchronous model, consensus is not reachable by deterministic protocols, even with
crash failures only. But there are randomised solutions that use only a constant number of
rounds to reach agreement [Bracha & Toueg 1985, Rabin 1989]. In MAFTIA, by employing
modern, efficient cryptographic techniques, this approach has been extended to a practical yet
provably secure protocol for Byzantine agreement in the cryptographic model that withstands
the maximal possible corruption [MAFTIA 2000]. The cryptographic model with randomised
Byzantine agreement is both practically and theoretically attractive. Randomised agreement
protocols may not terminate with non-zero probability, but this probability can be made
negligible. In fact, a protocol using cryptography always has a residual probability of failure,
determined by the key lengths. In consequence, this is a solution that works under arbitrary
failure assumptions, that is, faults (attack, intrusions) both in the time and space domains.

We have observed that randomised (probabilistic) protocols like Byzantine agreement make
essentially very few assumptions about the environment. One possible track in the quest for
more efficient implementations close to the boundary of arbitrary failure assumptions would
be to assume two operation modes. The optimistic asynchrony model that we are pursuing in
the MAFTIA project attempts to address this track. A fully asynchronous model is assumed as
a baseline framework, running randomised Byzantine agreement. However, whenever the
system exhibits enough synchrony, the system switches to a partially synchronous operation
mode, still malicious-fault resilient, but exhibiting better performance. The TTCB could be
used to make the algorithms and protocols aware of the current synchrony of the system, thus
enabling them to change operation mode in an accurate way.

5.2.9 Programming model
Although the main goal of MAFTIA is to provide security in the face of malicious faults, the
architecture must also provide a versatile functional support in order to be useful.
Consequently, it will support the main interaction styles used in distributed computing,
namely:

•  client-server, for service invocations

•  multipeer, for interactions amongst peers

•  dissemination, of information in push or pull form

•  transactions, for encapsulation of multiple actions

Client-server interactions can be implemented by two different mechanisms: in closed loop,
usually performed through RPC, or in open loop, usually performed through group
communication. Both approaches are easily implemented using group-based open-loop
mechanisms, such as offered by the middleware. Another style of interaction is multipeer,
conveying the notion of spontaneous, symmetric interchange of information, amongst a
collection of peer entities. Multipeer interactions are the kind of interaction one might wish
among managers of a distributed database, a group of commerce servers, a group of TTP
servers, or a group of participants running a cryptographic agreement protocol (e.g., contract
signing). Next, we have dissemination, which combines the information push and pull
approaches. Information is published by publishers, and is made available to interested
subscribers. Message subscription can be implemented using two different alternatives: the
push strategy or the pull strategy. Finally, transactions provide the capability of performing
sets of operations atomically, i.e. satisfying the well-known ACID properties.

The various styles referred to above can be combined to form more complex interaction
styles. For example, transactions may encapsulate several interactions built using the other
styles. Note also that the extensive use of open-loop client server mechanisms, multipeer
interactions, replication, and distributed transactions is yet another justification for the
emphasis of the group-orientation paradigm in the architecture of MAFTIA.
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5.3 Architecture
In this section, we provide an overview of the MAFTIA architecture and discuss the various
options that it offers at the hardware, local executive and distributed software levels.

5.3.1 Overview
The MAFTIA architecture is highly modular. This is an accepted design principle for building
distributed fault tolerance into systems. It facilitates the definition of different redundancy
strategies for different components, and the placement of the relevant replicas.

MAFTIA also aims at applications with a geographically large scale, namely services
provided to many clients coming from very far apart, whose core part may run on several,
possibly interconnected facilities of one or more organisations. Most of the research work in
MAFTIA is devoted to the design of suitable middleware protocols to ease the construction of
the core part of such services, and to the development of the services themselves and of their
interaction with clients. With regard to scalability, these protocols will, whenever appropriate,
be topology aware, a powerful construct for designing large-scale efficient protocols
[Rodrigues & Verissimo 2000].
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Figure 20 — Two-tier WAN-of-LANs

For example, at global level, there is advantage in recognising the topology of the networking
infrastructure as a logical two-tier WAN-of-LANs, as suggested in Figure 20: facilities
composed of pools of hosts (intranets) with privately managed high connectivity links, such
as LANs or MANs or ATM fabrics, are normally interconnected in the upper tier by the
publicly managed point-to-point global network (the Internet), through facility gateways,
logical devices that represent the local network members for the global network. Such
gateways not only serve as clustering points in terms of scale, but may also serve as intrusion
prevention devices, creating error containment domains (fire walling; inspecting incoming
and outgoing traffic for attack and intrusion detection; ingress and egress traffic filtering;
internal topology hiding, etc.).

As a matter of fact, such a structure offers opportunities for making different assumptions
regarding the types and levels of threat and degrees of vulnerability of the local network
versus the global network part. This does not necessarily mean considering intra-facility
networking threat-free. For example, certain port scans or pings in the global network may be
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completely innocent and harmless, whereas they may mean an attack if performed inside the
facility. Likewise, an intruder working from the inside of the facility may have considerably
more power than one working from the outside. In a global information society as considered
in MAFTIA, many participants will be coming from individual access points and not from
organisations: tax payers, voters, money owners, e-commerce customers, etc. They will
mostly be clients of MAFTIA services. Clearly, the WAN-of-LAN structure is expected to be
helpful in organising the latter, whereas clients will normally interact with the services
through simple and mostly standard interfaces.

The WAN-of-LANs view we have just presented can be recursively applied, in order to
represent very-large-scale organisations. On an intra-facility level, further hierarchies, namely
those already deriving from hierarchical organisation of sub-networks and domains, are not
precluded. On an intra-organisation (multi-facility) level, the topology depicted in Figure 20
can be re-instantiated to represent an organisation with multiple geographically dispersed
facilities interconnected by secure tunnels whose end points are internal Facility Gateways,
whose sole role is to implement the Virtual Private Network (VPN) interconnecting all
organisation facilities.

On the other hand, inside a host, we make a separation between the functionality concerned
with inter-host communication, which we call site level functions, and the functionality
concerned with distributed activity of processes, tasks, objects, etc., which we call participant
level functions (see Figure 20). Participants, which execute distributed activities, can be
senders or recipients of information, or both, in the course of the aforementioned activities.
For example, if more than one participant residing on a host is a recipient of a reliable
multicast message, the relevant group communication protocol runs at site level and only
delivers one message at that host, which is copied to all local recipients. From now on, when
specifying operations inside or among hosts in MAFTIA, we will refer to sites when taking
the communication/networking viewpoint on the system, and we will refer to participants,
when taking the activity/processing viewpoint.

5.3.2 Main architectural options
The structure of a MAFTIA host relies on a few main architectural options, some of which are
natural consequences of the discussions in Sections 5.1 and 5.2:

•  The notion of trusted — versus untrusted — hardware. Most of MAFTIA’s
hardware is considered to be untrusted, but small parts of it are considered to be
trusted in the sense of being tamper-proof by construction (see Section 5.3.3). Note
that this notion does not necessarily imply proprietary hardware, but for example
COTS hardware whose architecture and interface with the rest of the system
justifies the aforementioned assumption.

•  The notion of trusted software as a form of support component. This particular
instantiation of a trusted component in MAFTIA is the way in which we endorse the
notion of a fail-controlled subsystem in the runtime support. It is trusted to execute a
few functions correctly (which given the scope of MAFTIA, will normally be
security-related) albeit immersed in an environment subjected to malicious faults.
The use of trusted hardware may help substantiate this assumption.

•  The notion of run-time environment, extending operating system capabilities and
hiding heterogeneity amongst host operating systems by offering a homogeneous
API and framework for protocol composition. Functions supplied by the above-
mentioned trusted support software are offered through the runtime API.

•  Modular and multi-layered middleware, with a neat separation between: the
multipoint network abstraction, the communication support services, and the activity
support services. Despite this modularisation, the middleware is a white box,
allowing users direct access to any service from any layer. A given middleware
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layer may implement another instantiation of trusted MAFTIA component: a trusted
distributed component that overcomes the fault severity of lower layers and provides
certain functions in a trustworthy way.

AS - Authorisation Service, IDS - Intrusion Detection Service, TTP - Trusted Third Party Service
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Figure 21 — MAFTIA architecture dimensions

The MAFTIA architecture can be depicted in at least three different dimensions
(see Figure 21). First, there is the hardware dimension, which includes the host and
networking devices (whose topology was briefly discussed earlier) that make up the physical
distributed system. Second, within each node, there are the local support services provided by
the operating system and the run-time platform. These may vary from host to host in a
heterogeneous system, and some services may even not be available on some hosts or may
have to be accessed via the network using protocols providing an appropriate degree of trust.
However, at a minimum, the local services include typical operating system functionality such
as the ability to run processes, send messages across the network, access local persistent
storage (if it exists), etc. Third, there is the distributed software provided by MAFTIA: the
layers of middleware, running on top of the run-time support mechanisms provided by each
host; and MAFTIA’s native services, depicted in the picture — authorisation, intrusion
detection, and trusted third party services. Applications built to run on top of MAFTIA use
the abstractions provided by the middleware and the application services to operate securely
across several hosts, and/or be accessed securely by users running on remote nodes, even in
the presence of malicious faults. The distributed software components of the MAFTIA
architecture (middleware and services) are discussed in more detail in [Abghour et al. 2001,
Abghour et al. 2002, Cachin 2001b, Cachin 2002, Dacier 2002, Neves & Veríssimo 2001,
Neves & Veríssimo 2002]. In the remainder of this section, we discuss in a little more detail
the hardware, the local support, and the middleware.

5.3.3 Hardware
We assume that the hardware in individual MAFTIA hosts is untrusted in general. However
(see Figure 21) some hosts may have pieces of hardware that are trusted in the sense of being
regarded as tamper-proof, i.e. we assume that intruders do not have direct access to the inside
of the component.

Most of a host’s operations run on untrusted hardware, e.g., the usual machinery of a PC or
workstation, connected through the normal networking infrastructure to the Internet, which
we call the payload channel.
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Some hosts, for example, servers, will have trusted hardware components. Currently, we
consider two incarnations of such hardware, both readily available as COTS components. One
is a Java Card reader, connected to the machine's hardware, and interfaced by the operating
system. The Java Card executes software functions to which an attacker does not have access
and also stores keys. The other type of trusted hardware is an appliance board with processor.
Such a board is a common accessory in the PC family that has its own resources and is
interfaced by the operating system. However, an attacker does not have access to the interior
of the board. The board has a network adapter to a private network, which we call a control
channel (to differentiate it from the payload channel). An attacker does not have access to the
data circulating in the control channel.

Note that contrary to the traditional security view of the term “tamper-resistance” to denote a
downgraded version of “tamper-proofness”, we separate concerns between what is assumed
(“tamper-proofness”) and the merit of that assumption (its coverage), which may be
imperfect. For example, the Java Card is assumed in MAFTIA terminology to be tamper-
proof, but this quality is trusted to the extent we believe it is worthy of that trust. This
obviously depends on the level of threat we conjecture (e.g., logical vs. physical attacks,
chemical attacks, etc.), and on the criticality of the functions it is expected to perform.

5.3.4 Local support
The local support dimension of the architecture (see Figure 21) consists essentially of the
operating system augmented with appropriate extensions. We have adopted Java as a
platform-independent and object-oriented programming environment, and thus our
middleware, service and application software modules are constructed to run on the Java
Virtual Machine (JVM) run-time environment. The MAFTIA run-time support also includes
the APPIA protocol kernel [Miranda et al. 2001], which supports the construction of
middleware protocols from the composition of micro-protocols.

The run-time support thus includes abstractions of typical local platform services such as
process execution, inter-process communication, access to local persistent storage, and
protocol management. These are enhanced with specialised functions provided by the Java
Card based module, and the Trusted Timely Computing Base (TTCB).

The TTCB component is trusted from the viewpoints of correctness of its operation, and of
intrusion prevention: the kernel provides correct security-related functions in a fault free
situation, and cannot be intruded upon. In that sense, it is akin to what has been called a
security kernel in the literature. It must follow a few construction principles that guarantee
this behaviour in the face of faults:

•  Interposition: it must by construction be interposed between the vital resources
required for its correct operation and any attempt to interact with them (it is always
invoked to deal with these resources)

•  Shielding: it must be shielded (tamper-proof) from any contamination from the
outside (blocks any errors propagating from the rest of the system, e.g. malicious
attacks)

•  Validation: it must be verifiable, in order to ensure very high coverage of its
properties.

5.3.4.1 Java Card module

This component is used to assist the operation of a reference monitor, which supports the
MAFTIA Authorisation Service (see Section 5.5.3). It plays two main roles: it checks all
accesses to local objects, whether persistent or transient, and it autonomously manages all
access rights for local transient objects.
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The Java Card module runs partly on the operating system kernel (the reader interface part)
and partly on the Java Card (the function’s logic and the data structures, e.g., keys). Software
components interact with it through the run-time support (the JVM). The Java Card module is
used to support the operation of a local reference monitor, which runs partly on the former,
partly on a JVM resident module called the dispatcher. The reference monitor controls all
accesses to local objects by checking that each request carries a capability for the access. This
capability may have been delivered by the authorisation server, if the access is an access to a
persistent object, or by the reference monitor itself, if the access is an access to a local
transient object. The Java Card is trusted to the following extent: although it is feasible to
subvert it, however this requires an effort, in means and time, which makes it possible to
substantiate assumptions about the resilience of a given module, or alternatively (though not
currently exploited in the MAFTIA prototypes) of fault-tolerant quorums of k such replicas.
In other words, the Java Card is trusted to the extent of presenting certain hardness to being
broken, and of operating correctly until then.

In consequence, it is feasible to subvert a local reference monitor – in this case however, we
consider that: the local damage is confined such that the global properties are not affected;
and globally, no more than f local hosts may be compromised, such that the remaining hosts
together enforce error confinement through appropriate fault tolerance mechanisms. This
would mean that a successful attacker (i.e. an intruder) may become able to control accesses
to local objects but cannot be granted access to remote objects, or impersonate a fake object
for remote operations.

5.3.4.2 Trusted Timely Computing Base

The TTCB is a distributed trusted support component responsible for providing a basic set of
trusted services related to time and security, to middleware protocols (communication and
activity support). It aims at supporting malicious-fault tolerant protocols of any synchrony
built to a fail-controlled model, such as reliable multicast, by supplying reliable failure-
detection information. Furthermore, it helps to enforce timeliness specifications of protocols,
even if the environment only allows this to be achieved with some uncertainty.

One important characteristic of this component is that it implements some degree of
distributed trust for low-level operations. That is, protocol participants essentially exchange
their messages in a world full of threats, some of them may even be malicious and cheat, but
there is an oracle that correct participants can trust, and a channel that they can use to get in
touch with each other, even for rare moments. Moreover, this oracle also acts as a checkpoint
that malicious participants have to synchronise with, and this limits their potential for
Byzantine actions (inconsistent value faults).

The other important characteristic is that the TTCB is synchronous, in the sense of having
reliable clocks and being able to execute timely functions. Furthermore, the control channel
provides timely (synchronous) communication among TTCB modules.

A local TTCB runs partly on the operating system kernel (the appliance board interface part),
and partly on the appliance board itself. Software components interact with it through the run-
time support (the JVM). The TTCB component is trusted to the following extent:  it is
assumed to be not feasible to subvert the TTCB, but it may be possible to interfere in its
interaction with software components through the JVM. Whilst we let a local host be
compromised, we make sure that it does not undermine fault-tolerant operation of the
protocols amongst distributed components. Further to the TTCB tamper-proofness, we can
also count on the information exchanged by the local TTCBs (including the one on the
compromised host) through the control channel.

The TTCB component should be built in a way that secures both the synchronism properties
mentioned earlier, and its correct behaviour vis-à-vis malicious faults, with the desired
coverage. In consequence, a local TTCB would normally be built on dedicated hardware
modules, with a dedicated network, as discussed earlier in Section 5.3.3. However, we also
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consider simpler configurations not requiring dedicated trusted hardware for the TTCB, and
study their design in order to exhibit high coverage. The software-based solution consists of a
small secure real-time kernel running on the bare machine hardware, on top of which the
regular operating system runs (and all the rest of the host software). The TTCB is built on the
kernel, and can be trusted to the extent that this implementation enjoys the interposition,
shielding and validation properties [Abrams et al. 1995]. Note that the coverage expected
from this configuration cannot be worse than hardened versions of known commercial
operating systems. It might actually be better, since it only addresses the inner kernel and not
the operating system as a whole. It may thus constitute a very attractive implementation of
MAFTIA for its cost/simplicity/resilience trade-off.

The control channel can also assume several forms exhibiting different levels of timeliness
and resilience. It may or may not be based on a physically different network from the one
supporting the payload channel. For example, virtual channels with predictable timing
characteristics coexisting with essentially asynchronous channels are feasible in some current
networks, even over the Internet, through QoS protocols, or through overlay networks
[Schulzrinne et al. 1996]. Such virtual channels can be made secure through virtual private
network (VPN) techniques, which consist of building secure cryptographic IP tunnels linking
all TTCB modules together, and these techniques are now supported by standards [Kent &
Atkinson 1998]. On a timeliness side, it should be observed that the bandwidth required of the
control channel is bound to be much smaller than that of the payload channel. In more
demanding scenarios, one may resort to alternative networks (real-time LAN, ISDN
connection, GSM or UMTS Short Message Service, Low Earth Orbit satellite
communication).

The TTCB is designed to act as an assistant for parts of the execution of the protocols and
applications supported by the MAFTIA middleware, and consequently it can be called from
any level of the middleware dimension of the architecture. The services provided by the
TTCB fall into two broad categories: security-related services, and time-related services. The
former include services such as trusted block consensus, unilateral TTCB authentication, and
trusted random number generation. The latter include services such as the trusted provision of
absolute time, duration measurement and timing failure detection. These services and the
properties they guarantee are described in more detail in [Neves & Veríssimo 2002].

5.3.5 Middleware
The distribution dimension impacts on the protocol design but not on the services provided by
each host. These are constructed on the functionality provided by the several middleware
modules, represented in Figure 22. These interactions occur through the run-time
environment. The several profiles for building protocols that were discussed earlier (e.g.,
time-free, timed, etc.) are achieved by composition of the micro-protocols necessary to
achieve the desired quality of service. The middleware hides these distinctions from the
application programmer by providing uniform APIs that are parameterised with functional
and non-functional guarantees. The design of these APIs is explained in more detail in [Neves
& Veríssimo 2002].

As mentioned earlier, a middleware layer may host a trusted distributed component that
overcomes the fault severity of lower layers and provides certain functions in a trustworthy
way. These are in turn trusted by the layers above, in a recursive way. For example, a
(distributed) transactional service trusts that a (distributed) atomic multicast component
ensures the typical properties (agreement and total order), regardless of the fact that the
underlying environment may suffer Byzantine malicious attacks.

In Figure 22, the set of layers is divided into site and participant parts. The site part has access
to and depends on a physical networking infrastructure, not represented for simplicity. The
participant part offers support to local participants engaging in distributed computations. The
lowest layer is the Multipoint Network module, MN, created over the physical infrastructure.
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Its main properties are the provision of multipoint addressing, basic secure channels, and
management communications. The MN layer hides the particularities of the underlying
network to which a given site is directly attached, and is as thin as the intrinsic properties of
the former allow. It also provides a run-time (JVM and APPIA) compliant interface for the
protocols to be used (e.g., IP, IPSEC, SNMP).

The Communication Support Services module, C S, implements basic cryptographic
primitives, Byzantine agreement, group communication with several reliability and ordering
guarantees, clock synchronisation, and other core services. The CS module depends on the
MN module to access the network. The Activity Support Services module, AS, implements
building blocks that assist participant activity, such as replication management (e.g., state
machine, voting), leader election, transactional management, authorisation, key management,
and so forth. It depends on the services provided by the CS module.

The block on the left of the figure implements failure detection and membership management.
These functions are performed both at site and participant level. At site level, site failure
detection is in charge of assessing the connectivity and correctness of sites, and the Multipoint
Network module depends on this information. Failure detection is not completely reliable, due
to the uncertain synchrony and susceptibility to attacks of at least parts of the network. Site
membership management, which depends on failure information, creates and modifies the
membership (registered members) and the view (currently active, or non-failed, or trusted
members) of sets of sites, which we call site-groups. The CS module depends on this
information.
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Figure 22 — Detailed architecture of the MAFTIA middleware

In the participant part, participant failure detection assesses the liveness of all local
participants, based on local information provided by sensors in the operating system support.
Participant membership management performs similar operations as site membership on the



Conceptual Model and Architecture of MAFTIA

75

membership and view of participant groups. Note that several participant groups, or simply
groups, may exist in a single site. The separation of concerns between groups of participants
(performing distributed activities), and site-groups of the sites where those participants reside
(performing reliable communication on behalf of the latter) is beneficial to application
structuring. This can be further enhanced by mapping more than one group onto the same site-
group, in what are called lightweight groups [Rodrigues et al. 1996]. The Activity Support
Services depend on the participant membership information.

The protocols implementing the layers described above fulfil the topology awareness
property. As such, they may run differently depending on their position in the topology,
although this happens transparently. For example, a site-failure detection protocol instantiated
at the Facility Gateways may wish to aggregate all liveness/failure information from the sites
it oversees, and gather that same information from the corresponding remote Facility
Gateways. These considerations may obviously be extended to topology-aware attack
diagnosis and intrusion detection.

5.4 Intrusion-tolerance strategies in MAFTIA
The goal of MAFTIA is to support the construction of dependable trustworthy applications,
implemented by collections of components with varying degrees of trustworthiness. This is
achieved by relying on distributed fault and intrusion-tolerance mechanisms. Given the
variety of possible MAFTIA applications, several different strategies are pursued in order to
achieve the above-mentioned goal. These strategies are applied at several levels of abstraction
of the architecture, most importantly, in the implementation of the middleware and
application services. In this section, we describe these strategies: fail-uncontrolled or
arbitrary; fail-controlled with local trusted components; fail-controlled with distributed trusted
components.

The conventions used for the figures in the following sections are as follows: grey means
untrusted (the darker, the “less trusted”); white means trusted; the presence of a clock symbol
means a synchronous environment; a crossed out clock symbol means an asynchronous
environment; a warped clock symbol means a partially-synchronous environment; a key
means a secure environment; dashed arrows means IPC or communication that can be
interfered with; continuous arrows denote trusted paths of communication.

5.4.1.1  Fail-uncontrolled

The fail-uncontrolled or arbitrary failure strategy is based on the no-assumptions attitude
discussed in Section 5.2.1. When very large coverage is sought of given mechanisms in
MAFTIA, we resort to making no assumptions about time, following an asynchronous model,
and we make essentially no assumptions about the faulty behaviour of either the components
or the environment. Of course, for the system as a whole to provide useful service, it is
necessary that at least some of the components are correct. This approach is essentially
parametric: it will remain correct if a sufficient number of correct participants exist, for any
hypothesised number of faulty participants f.
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Figure 23 shows the principle in simple terms. The hosts and the communication environment
are not trusted, and are fully asynchronous. For a protocol to be able to provide correct
service, it must cope with arbitrary failures of components and the environment. For example,
component Ck is malicious, but this may be because the component itself or host C have been
tampered with, or because an intruder in the communication system simulates that behaviour.

Some protocols used by the MAFTIA middleware follow this strategy, in order to be resilient
to arbitrary failure assumptions. They are of the probabilistic Byzantine class, and require a
number of hosts n > 3f, for f faulty components. The MAFTIA middleware provides different
qualities of service in this asynchronous profile, achieved by composition of several micro-
protocols on top of basic binary Byzantine agreement, in order to achieve: reliable broadcast,
atomic broadcast; multi-valued Byzantine agreement.

5.4.1.2 Fail-controlled with local trusted components

Figure 24 exemplifies a fail-controlled strategy. It consists of assuming that, as for the fail-
uncontrolled strategy, hosts and communication environment are not trusted, and
asynchronous. However, hosts have a local trusted component (LTC), which supports
functions they can trust for certain steps of their operation. In MAFTIA, this strategy is
implemented through a Java Card that equips some hosts. As such, we can construct protocols
that cope with a hybrid of arbitrary and fail-silent behaviour, depending on whether a
component is interacting with the other components or with the local trusted component
(LTC).
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Figure 24 — Fail-controlled with local trusted components

In the example, component Ck may be arbitrarily malicious, either because the component
itself or host C has been tampered with, or because an intruder in the communication system
simulates that behaviour. However, unlike the fail-uncontrolled strategy, the impact of this
behaviour on the other components (i.e., error propagation) may be limited, if the protocol
makes components perform certain checks and validations with the LTC (for example,
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signature validation), which will prevent Ck from causing certain failures in the value domain
(for example, forging). An additional proviso must be made: since the host environment is
untrusted, IPC between a component and its LTC may be interfered with, though in a
controlled way. For example, if host B is contaminated, component Cj may behave
erroneously, but protocols can be designed in a way that prevents Cj from behaving in an
arbitrary (e.g. Byzantine) way towards the other hosts.

This strategy is followed in the construction of the MAFTIA authorisation service.
Components run distributed fault-tolerant authorisation protocols based on capabilities that
express the access control for objects. These protocols run among the authorisation server
replicas and the hosts running a MAFTIA application. Given the criticality of the
authorisation service, it is also worthwhile noting that the trust put on the Java Card LTC for
this application is not absolute, in the sense that the higher-level protocols are ready to cope
with the possibility of subversion of some Java Card modules and still ensure globally correct
operation of the service.

5.4.1.3 Fail-controlled with distributed trusted components

The “fail-controlled with distributed trusted components” strategy amplifies the scope of
trustworthiness of the local component support, by making it distributed. As such, certain
global actions can be trusted, despite a generally malicious communication environment. This
strategy is implemented in MAFTIA through the TTCB (Trusted Timely Computing Base),
which builds trust on global (distributed) time-related and security-related properties (such as
global time, distributed durations, block agreement). One main impact of relying on the
TTCB is that timed behaviour can be supported globally in an intrusion-resilient way, as
suggested by the warped clocks in Figure 25: the system is assumed to be partially
synchronous, that is, anywhere in the interval ranging from time-free to fully synchronous,
depending on the environment. This strategy assumes, as for the preceding strategies, that the
hosts and communication environment are not trusted.
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(TTCB)

DTC

Hybrid Failure Timed Protocols

(TTCB) (TTCB) (TTCB)

Figure 25 — Fail-controlled with distributed trusted components

The distributed trusted component (DTC) is implemented by the local TTCBs interconnected
by a control network. As with the “fail-controlled with local trusted components” strategy, in
order for a protocol to be able to provide useful service, it has to cope with a hybrid of
arbitrary and fail-silent behaviour, depending on whether a component is interacting with the
other components or with the TTCB. Consider the example of Figure 25, where again
component Ck or host C may be arbitrarily malicious. Like the “fail-controlled with local
trusted components” strategy, the impact of the faulty behaviour of these components may be
limited by enforcing certain validations with the local TTCB. However, the fact that the
TTCBs are interconnected and can exchange information and perform agreement in a secure
way — through the control channel — further limits the potential damage of malicious
behaviour: the DTC ‘knows’ directly what each of the components in different hosts ‘say’,
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unlike the solution with LTCs, where an LTC only ‘knows’ what a remote component ‘says’,
through the local component. To achieve this, the TTCB allows the set-up of secure channels
with any local component, and offers a low-level block consensus primitive. For example,
components Ci through Cl could set up secure IPC with the TTCB, through which they would
run such a consensus as part of the execution of some protocol.

The other relevant aspect of the TTCB strategy is time. The TTCB supports timed behaviour
in an intrusion-resilient way. As discussed in Section 5.2.6, timed systems are fragile in that
timing assumptions can be manipulated by intruders. The TTCB supplies constructs that
enable protocols to tolerate this class of intrusions. These are obviously related to the trusted
time-related services briefly described earlier, namely absolute time, duration measurement
and timing failure detection. As suggested in Figure 25, the TTCB DTC is a fully
synchronous subsystem. It supplies its services to the payload system, which can have any
degree of synchronism, as suggested by the warped clock. The TTCB does not make the
payload system “more synchronous”, but allows it to take advantage of its possible
synchronism, in the presence of faults, both accidental and malicious. As such, the TTCB can
assist an application running on the payload system to determine useful facts about time: for
example, be sure it executed something on time; measure a duration; determine it was late
doing something, etc. Then, the payload system, despite being imperfect (it suffers timing
faults, some of which may result from attacks), can react (implement fault-tolerance
mechanisms) based on reliable information about the presence or absence of errors (provided
by the TTCB at its interface).

Depending on the type of application, it is not necessary that all sites have a local TTCB.
Consider the development of a fault-tolerant TTP (Trusted Third Party) based on a group of
replicas that collectively ensure the correct behaviour of the TTP service vis-à-vis malicious
faults. The nodes hosting these replicas have TTCBs that support the execution of the group
communication and replica management protocols under a timed model.

Several of the MAFTIA middleware protocols follow the “fail-controlled with TTCB”
strategy. These protocols are group-oriented, deterministic, and can provide timeliness
guarantees. The MAFTIA middleware provides different qualities of service in this timed
profile by composing several micro-protocols on top of basic unreliable multicast. For
example, this is the way in which reliable multicast and atomic multicast protocols are
achieved.

5.5 Examples of MAFTIA intrusion tolerant services
To illustrate the application of MAFTIA intrusion-tolerance strategies to the problem of
building intrusion tolerant trusted services, we briefly discuss four examples that are being
developed within the project, namely intrusion-detection service, trusted third party services,
authorisation service, and transaction service. More details about these services can found in
[Abghour et al. 2001, Abghour et al. 2002, Cachin 2001b, Cachin 2002, Dacier 2002, Neves
& Veríssimo 2001].

5.5.1 Intrusion-detection service
The goal of MAFTIA is to support the construction of dependable trustworthy applications by
distributing trust. As discussed in Chapter 4, intrusion detection is relevant at all levels of the
architecture. For example, the operating systems used by the MAFTIA platform should have
integrity checking and configuration checking enabled. Reports of attacks staged against
servers running on the platforms should be noted. Periodic auditing or review of the systems
and their administrators should be performed. The logging information generated by the
MAFTIA middleware, support structures, and so forth may also be used to support intrusion
detection. For example, repeated incorrect calculations or evidence of a dictionary attack
against cryptographic mechanisms should be noted.
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Not only should the intrusion-detection service rely on information collected from every layer
of the architecture, but also the intrusion-detection service should itself be intrusion tolerant.
Sophisticated attackers are likely to target the intrusion-detection system in an attempt to
disable it or in order to disguise their subsequent attacks. The strategies described in section
5.4, middleware services such as secure channels, and the principle of error compensation can
all be used to make the intrusion-detection service intrusion tolerant.

The choice between the “fail-uncontrolled” and the “fail-controlled with distributed trusted
components” strategies for the design of the intrusion-detection components depends on
factors such as the number of components required and where they are placed. Some
components will be able to use specialised platforms that support TTCBs, for example,
standalone network-based sensors. Other components may have to co-exist with applications
on standard platforms and will have to adopt a fail-uncontrolled strategy.

The question of whether the intrusion-detection system should use the reliable and secure
communication channels provided by MAFTIA is answered by consideration of the failure-
modes. Naturally, one would not wish to use a communication channel to signal failure of the
communication channel itself. In addition, one would not wish to invoke a large distributed
architecture to communicate between two components within a single trust domain. In
intrusion-detection system settings where error compensation does not make sense, we can
use much simpler mechanisms and channels (as described in Section 4.2.4).

Error compensation could be used to improve the robustness of the communication channels
that the intrusion-detection components use to communicate. Error compensation relies upon
the erroneous state containing enough redundancy to enable its transformation into an error-
free state. In intrusion-detection system settings where error compensation is appropriate, we
can benefit by incorporating redundancy into the data sent through the communications
channels. Message selection algorithms can be applied to the messages received over multiple
channels. This would enable faults due to intrusion or other causes to be masked.

These architectural trade-offs in building an intrusion tolerant intrusion-detection system are
explored further in Chapter 6 of [Dacier 2002].

5.5.2 Distributed trusted services
These services are based on the fail-uncontrolled strategy, and error compensation. Error
compensation is implemented by using active or “state machine” replication [Powell et al.
1988] in the Byzantine model. The general idea is to implement a server providing the service
as a deterministic state machine and replicate it. We assume a static server group of n
replicated servers, of which up to t may fail in completely arbitrary ways. Clients send their
requests to the server group, the replies are collected by the client and a selection algorithm is
applied to determine the correct reply. This allows the corruption of a subset of the servers to
be tolerated. Requests to the services are delivered by the broadcast protocols described in
[Cachin 2001b] that have been designed to cope with arbitrary failures of components and the
environment. A broadcast is started when the client sends a message containing the request to
a sufficient number of servers. In general, the client must send the request to more than t
servers or a corrupt server could simply ignore the message; alternatively, one could postulate
that one server acts as a gateway to relay the request to all servers and leave it to the client to
resend its message if it receives no answer within the expected time.

Depending on whether it is necessary to maintain causality among client requests, a service
may use atomic broadcast directly or secure causal atomic broadcast otherwise. If the client
requests commute, reliable broadcast suffices.

Each server returns a partial answer to the client, who must wait for at least 2t+1 values
before determining the proper answer by majority vote. Since atomic broadcast guarantees
that all servers process the same sequence of requests, the client will obtain the same answer
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from all honest servers. If the application returns a digital signature, the answers may contain
signature shares from which the client can recover a threshold signature.

The following are examples of the types of applications envisaged as being made intrusion
tolerant using this approach:

•  Digital Notary Service. A number of applications require a single counter to be
provided by a trusted central authority. In its most basic form, a digital notary
service receives documents, assigns a sequence number to them and certifies this by
its signature.

•  Fair Exchange TTPs. Fair Exchange protocols are useful in electronic commerce for
digital content selling, certified email or electronic contract signing. The fairness
property ensures that either both parties that wish to exchange items get the item
they are supposed to, or that neither party gets anything.

•  Certification Authority (CA). A CA is a service run by a trusted organisation that
verifies and confirms the validity of a public key. The issued certificate usually also
confirms that the real-world user defined in the certificate is in control of the
corresponding private key. The CA links the public key to a user’s identity by
signing the two together under the CA’s private signing key.

•  Authentication Service. The basic task of an authentication service is to verify the
claimed identity of a user or a process acting on behalf of a user. This service is
used when privileges are granted according to user identity (e.g., by an authorisation
service), or when the authentic identity of a user must be recorded for
accountability.

•  Authorisation Service. An authorisation service is in charge of granting or denying
rights for specified subjects to carry out specified operations on specified objects.
MAFTIA is developing a distributed trusted authorisation service for multiparty
transactions that is sketched out in the following sub-section.

[Cachin 2001b] discusses this approach to building dependable trusted third party services in
more detail.

5.5.3 Authorisation service
Most current Internet applications do not use authorisation services. Such applications are
based on the client-server model where, typically, the server distrusts clients, and grants each
client access rights according to the client’s identity. Moreover, the server must usually record
the client’s identity and as much information as possible on the transaction to support dispute
resolution. It is then easy to correlate such personal information for marketing purposes: the
client’s identity, usual IP address, postal address, credit card number, purchase habits, etc.
Such a model is thus necessarily privacy-intrusive.

Furthermore, the client-server model is not rich enough to cope with complex transactions
involving more than two participants. For example, an electronic commerce transaction
requires usually the cooperation of a customer, a merchant, a credit card company, a bank, a
delivery company, etc. Each of these participants has different interests, and thus distrusts the
other participants.

Authorisation services have been introduced in locally distributed systems, mainly to facilitate
security management (Delta-4 [Blain & Deswarte 1990], HP Praesidium authorisation server,
ADAGE [Zurko et al. 1999]). In these cases, according to a security policy, the authorisation
service distributes authorisation tickets or capabilities, which are later presented as proofs that
an operation has to be granted by another server. The authorisation service usually uses an
authentication service and locally stored information to decide whether or not to authorize a
given operation to a given user.
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Within the MAFTIA project, we are developing authorisation schemes that can grant fair
rights to each participant of a multiparty transaction, while distributing to each one only the
information strictly needed to execute its own task, i.e., a proof that the task has to be
executed and the parameters needed for this execution, without unnecessary information such
as participant identities. These schemes are based on two levels of protection:

•  An authorisation server is in charge of granting or denying rights for high-level
operations involving several participants; if a high-level operation is authorized, the
authorisation server distributes capabilities for all the elementary operations that are
needed to carry it out.

•  On each participating host, a reference monitor is responsible for fine-grain
authorisation, i.e., for controlling the access to all local resources and objects
according to the capabilities that accompany each request. To enforce hack-proofing
of such components on off-the-shelf computers connected to the Internet, critical
parts of the reference monitor will be implemented on a trusted component based on
a Java Card.

The implementation of an intrusion-tolerant authorisation service relies on applying error
compensation, and the “fail-controlled with local trusted components” strategy. Error
compensation is implemented through the combined use of active replication and
fragmentation-redundancy-scattering [Deswarte et al. 1991]. The authorisation service is
composed of replicated and diverse servers, operated by independent people, so that any
single fault or intrusion can be tolerated without degrading the service. Confidential
authorisation data is fragmented, replicated and scattered across the servers. In order to
reconstruct the data multiple servers must co-operate. This means that as long as only a
minority of the replicas are compromised there is no loss of confidentiality of authorisation
data. A “fail-controlled with local trusted components” strategy is used, based on threshold-
signature algorithms. Access to application resources is controlled by the local trusted
component. If the latter is compromised then the effect of the failure is localised due to the
limited trust put on the Java Card: the corruption of the local host gives no privilege to access
remote objects, and a corrupt host cannot impersonate another host.

For more details of the Authorisation Service, see [Abghour et al. 2001, Abghour et al. 2002]
and two recent publications [Deswarte et al. 2001, Deswarte et al. 2002].

5.5.4 Transaction service
A transaction is a set of requests that have the ACID properties [Härder & Reuter 1983]:
atomicity, consistency, isolation and durability. Atomicity is the property that a transaction
must be all or nothing. Consistency is the property that a transaction takes the system from
one consistent state to another consistent state. Isolation is the property that the intermediate
effects of a transaction must not be visible to another transaction. Durability is the property
that the effects of a transaction are permanent.

Typical transaction service architectures are composed of clients, resource managers and
transaction managers. Clients interact with the transaction manager to establish transactions.
Within the scope of a transaction, the clients operate on resources via resource managers. A
resource manager is a wrapper for resources that allows resources to participate in two-phase
commit [Gray 1978] and recovery protocols coordinated by a transaction manager, and
controls the access that clients have to resources. The transaction manager is primarily a
protocol engine. It implements the two-phase commit protocol and recovery protocol.

The MAFTIA transaction service supports multiparty transactions and provides atomicity in
the face of failure due to intrusions as well as crash failure. Multiparty transaction support
allows one client to begin a transaction and to invite other clients to join with it in the
transaction context. All clients within the transaction context can access transactional
resources in a cooperative manner using application-specific protocols while competing for
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access to resources with clients who are not within the same transaction context. The
MAFTIA transaction service preserves atomicity in the face of failure due to intrusions as
well as hardware or software failure. It achieves this by applying error compensation and the
strategies: “fail-controlled with local trusted components” and “fail-controlled with
distributed trusted components”.

Error compensation is implemented using active or “state machine” replication [Powell et al.
1988]. The transaction service is composed of replicated and diverse resource manager and
transaction manager servers. We rely upon the MAFTIA middleware’s communication
services to implement the replication. Therefore, in order for the transaction service to tolerate
intrusions, we need the communication services to be intrusion tolerant.

Two different strategies can be used to make the communication services intrusion tolerant.
The “fail-uncontrolled” strategy can be used to provide fault-tolerant atomic broadcast for
systems where Byzantine behaviour by users is possible and we cannot make timing
assumptions. The fault-tolerance provided by this strategy depends upon the use of time-free
probabilistic Byzantine protocols. The “fail-controlled with distributed trusted components”
strategy can be used to provide fault-tolerant atomic broadcast where a TTCB is present. The
tamper-proof construction of the local TTCB and the control channel prevents the host
engaging in Byzantine behaviour or being vulnerable to timing attacks.

We must also prevent unauthorised clients from interacting with the transaction service. The
“fail-controlled with local trusted components” strategy provides authorisation for the users of
the transaction service. Capabilities for accessing resources are issued by the distributed
authorisation server, and checked by the local trusted component. In addition, since the
component is tamper-proof, private keys that could be used by an adversary to gain access to
remote resources will not be revealed even if the host is compromised. For example,
compromising the transaction manager will not result in the adversary gaining control of the
resource managers.

The design of the Transaction Service is described in more detail in [Neves & Veríssimo
2001].
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Chapter 6 Verification and Assessment

The purpose of verification and assessment in secure systems is two-fold: to uncover design
faults, i.e., human-made development faults, which are typically accidental; and to provide
positive evidence of the integrity of the system under scrutiny. On the one hand, verification
and assessment is a security method in itself, a part of vulnerability removal. On the other
hand, it can be seen as an assurance technique accompanying, and orthogonal to, many other
security methods, ensuring that they achieve their objectives. This second view corresponds to
the duality between functional and assurance requirements in security evaluation criteria, such
as [DIS 15408-1-3].

The verification and assessment work-package within MAFTIA employs non-automated
proof and automated proof. The non-automated proof is largely based on the rigorous secure
reactive systems theory of Pfitzmann and Waidner [Pfitzmann & Waidner 2001]. The
automated proof takes the form of model-checking, where the models and specifications are
described in the process algebra CSP [Hoare 1985, Roscoe 1998], and the model-checker
FDR [Formal Systems (Europe) Ltd] is used to help reason about them.

6.1 Special purpose of verification and assessment in MAFTIA
A discussion covering all aspects of assessment and verification for such general topics as
considered in MAFTIA would be completely beyond the scope of this document. We
therefore concentrate on aspects where new developments were needed for MAFTIA. We had
two main goals here:

1. To provide a rigorous formalisation of the basic concepts of MAFTIA, in particular as
presented in Chapters 2 and 3.

2. To develop new specification and verification techniques in areas where traditionally
separate sub fields of dependability meet and no appropriate techniques exist yet.

These aspects are described in Sections 6.2 and 6.5. In Section 6.4, we give a brief overview
of the general role of verification and assessment in dependability from a MAFTIA
perspective.

6.2 Formalisation of basic concepts of MAFTIA and architectural
principles

Chapters 2 and 3 of this report define the basic MAFTIA concepts in a rather precise way, but
entirely in natural language. In particular, there are general system terms like “component”
and “specification”, relative to which dependability-specific terms such as “fault”, “error”,
“failure”, and the various classes of security methods are defined. For use in verification, all
these “meta-definitions” must be cast into mathematically rigorous concepts. They will thus
gain in precision, but also lose in generality. For instance, all the rigorous models we have
used in MAFTIA are discrete, although the meta-definition that a maliciously faulty
component behaves “arbitrarily” could certainly also be expressed using a continuous system
model.

For the system terms, one might have hoped to reuse one of the many existing general system
models, so that only new definitions for dependability-specific terms would be needed.
However, the scope of MAFTIA includes cryptographic subsystems, and so this was not
possible, as we are unaware of any fully defined system model that includes all the necessary
aspects, such as probabilism, resource limitations, and restricted adversarial scheduling of
events.
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The current formalisation is mainly presented in [Adelsbach & Pfitzmann 2001] and
[Adelsbach & Steiner 2002]. In the following, we give a guide to it alongside the meta-
definitions of the earlier chapters of the present document; the terms from the meta-definitions
are in bold face.

6.2.1 Behaviour and structure of a system
Formalisation of the basic concepts of MAFTIA begins with formalising the notion of a
system: Atomic systems (entities, components) are formalised as probabilistic I/O automata16

called machines. Their states are in general just a set, which could be implemented as the
current value of a tuple of variables. Atomic systems have several ports for interaction with
their environment. They can be composed into larger systems by linking their ports;
concretely this is done by a naming convention. This is the structural point of view. Some
ports may remain free in this composition, so that one may get a larger system that can again
interact with its environment. One can combine several machines into a larger machine; this
gives the recursive view of systems as components of other systems.

The most general definition of behaviour is made for such collections of atomic systems; it is
a probability distribution on possible runs, i.e., on sequences of states, inputs and outputs.
There is no specific definition of “the service” delivered by a system, but one could define it
as the I/O behaviour of the system combined into one machine, or even as a description of this
without states at all as in [Gray III 1992]. Similarly, the general model does not define the
notion of “service element” (although many concrete systems do offer them, e.g., as reactions
on different classes of inputs), because typically the reactions are interlinked via global parts
of the state, i.e., a service element cannot formally be defined in isolation.

The behaviour definition, by its nature, must include a model of time, a concept informally
discussed in Section 5.2.6. We have defined a synchronous and an asynchronous model, both
already including the fact that malicious components may want to deviate from timing
requirements.17 In previous work, we reported on the CSP modelling of synchronous
[Adelsbach & Pfitzmann 2001], asynchronous [Creese & Simmonds 2002], and hybrid
synchrony [Adelsbach & Creese 2003] models. This modelling was partly general theory and
partly by example through the modelling of specific MAFTIA protocols. For that modelling
we endeavoured to capture the formalisations of those synchrony models as accurately as
possible.

Specifications occur in several forms in the model. First, for atomic systems (components),
the desired state-transition function can be considered to be a specification in itself. Then any
deviation, even in the internal state, is considered to be not only an error but also a failure.
This is also the view that one takes if one regards components to be atomic from the
dependability point of view, i.e., with no internal fault-tolerance measures. Secondly, there
are different classes of specifications that leave more freedom, in particular for internal fault-
tolerance. We have formalised certain important classes, but as these are mainly a
formalisation of the concepts described in Section 3.1, we postpone further discussion of them
until 6.2.3.

6.2.2 Modelling faults
Due to the mathematical nature of a formalisation, we mainly model errors and failures, and
not faults (“causes”).

                                                       
16 Note that our formulation of the I/O automata model is not the traditional one, e.g. DFA or NDFA,

but is computationally equivalent to Turing Machines.
17 The asynchronous model allows the derivation of (partially) timed models as specializations by

introducing specific scheduler components [Backes 2002].
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In principle, faults may cause a system to behave unexpectedly. Verifying the dependability
of concrete systems, however, clearly presupposes failure assumptions as in Section 5.2.1.
Under a particular fault model, the behaviour of the system is expected to meet its
specification. The verification is only meaningful in practice if the failure assumptions are
correct, because correctness is only checked for with respect to the fault model.18 Model
checking is an ideal choice for formulating such testing, as it provides one with details of
system behaviour.

The formalisation captures arbitrary failure assumptions by representing a system as an
arbitrary set of possible machine collections, where each machine is defined to fail according
to its failure assumptions. However, it also provides various predefined specialisations
corresponding to particular sets of common failure assumptions. These include arbitrary and
controlled failures of individual components, and passive or active tapping of communication
links. In particular, the failure model replaces all maliciously failed components by one
component ‘A’ the adversary, so called because the malicious behaviour may be co-ordinated.
To allow computationally secure systems, a runtime restriction may be made on A (this is
equivalent to implementing a controlled failure assumption, cf. Section 5.2.1). In addition,
there is still a model of an arbitrary honest user ‘H’ to whom a service is guaranteed. We also
have a predefined specialisation to dynamic failures (see [Adelsbach & Creese 2003] for a
detailed example).19

Hybrid failure assumptions assume parts of the overall system to exhibit a fail-controlled
behaviour while other parts of the system are assumed to fail in an uncontrolled way. As
discussed in Section 5.2.3, we have to achieve coverage of controlled failure assumptions by
augmenting fail-uncontrolled components by additional enforcement components that
perform attack/intrusion prevention/masking and by proving that the controlled failure
assumptions hold. Modelling such composed fail-controlled components as well as the overall
system is straightforward, using the formalisation of basic concepts as outlined above.

Furthermore, our composition theorems (see Section 2.8 of [Adelsbach & Pfitzmann 2001],
and Section 2.5 of [Adelsbach & Steiner 2002]) allow us to prove the correctness and security
of such systems in a modular way: We first prove that the system’s sub-components, possibly
consisting of several fail-uncontrolled sub-components and enforcement components, fulfil
their specification20. Then we can prove the security of the overall system by assuming that all
sub-components fulfil their specification, i.e., by substituting all sub-components by their
specification. Finally, the composition theorem guarantees that substituting the specification
of sub-components by their implementation preserves the proven properties of the overall
system.

As in the non-automated formalism, described above, in our CSP modeling we also tended to
replace all malicious components by a single adversary process, at least when the corruption
model was assumed to be static, which for all our protocol verifications was the case.
However, in CSP the modelling of faults is, for all practical purposes, restrained by state-
space considerations. The CSP models not only have to be finite-state, but also the state has to
be relatively small in order for the models to be tractable to automated checkers. This means
that in practice we cannot model the generalised adversary as presented in the non-automated
formalism. In particular, probabilistic behaviour is generally not possible to model tractably,
and thus, for example, imperfections in cryptographic primitives are usually abstracted away

                                                       
18 Of course, it is also possible to test the sensitivity of a system to faults outside its failure

assumptions.
19 Including dynamic repairs should be fairly easy if repaired components restart in a fixed state and

are brought up to date within the system. If an appropriate state must be set by hand in the repair,
this is harder to model.

20 Here, a component’s specification comprises its service as well as the assumed fail-controlled
behaviour.
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by Dolev-Yao type assumptions in CSP [Dolev & Yao 1983]. In CSP it is usually necessary
to model adversaries particular to the service under consideration according to the failure and
trust assumptions of that service. This is exemplified by the CSP modelling of particular
MAFTIA protocols as reported on in [Adelsbach & Pfitzmann 2001], [Creese & Simmonds
2002] and [Adelsbach & Creese 2003]. In particular, [Creese & Simmonds 2002] discusses
how dynamic and stop failures can be modelled in CSP.

6.2.3 Specifications for dependability
As discussed in Section 2.2, dependability in general just means that a system reliably
delivers a desired service. Hence there is, a priori, nothing specific about specifications for
dependability — anything we may want to specify we may also want to have delivered
reliably. Thus, to a large extent, dependable fulfilment of a specification is simply defined as
follows: all sets of possible machine collections that are possible under the failure assumption
(see Section 6.2.2) fulfil a normal specification in the normal sense.

Nevertheless, there are certain dependability-specific aspects of specifications that are
important, in particular security-specific ones.

The first aspect is an inclusion of confidentiality properties. There are two approaches to this:

1. One takes a “normal” specification that describes a service unambiguously (i.e., without
remaining degrees of freedom) and extends the formal notion of fulfilment to the fact that
an adversary on the real system should not learn more than an adversary on the
specification. This is also called simulation.

2. One defines specific confidentiality properties, e.g., that an adversary cannot gain any
knowledge about certain inputs via the system.

The second aspect is fulfilment in a computational sense. This becomes necessary for almost
all systems containing cryptography, because most cryptographic systems are easily breakable
given arbitrary computational resources. In cryptography this aspect is traditionally put into
the specification, but we claim that in large-scale systems the specifications should stay
“normal”, i.e., not clogged up with such details, and the imperfections should be defined as a
specific semantics.

MAFTIA work on verification and assessment has in particular extended the first approach to
including confidentiality properties, and has also for the first time clearly defined fulfilment in
a computational sense for both simulations and individual integrity properties.

The division into availability, integrity and confidentiality occurs in the general rigorous
model, but as classes of properties rather than “attributes”: integrity properties (where the
“validity” of the data can be defined in terms of consistency of the state of the target system)
are equivalent to safety properties in the sense of [Alpern & Schneider 1985]; availability
corresponds to liveness properties; and confidentiality corresponds to non-interference
properties. Simulatability definitions cover all three classes.21 A similar unification of all three
security properties in terms on non-interference is presented in [Focardi & Martinelli 1999].

Readers interested in seeing how authenticity and non-repudiation can be considered as
integrity properties, as claimed in Section 3.1.3.4, are referred to the example in Chapter 4 of
[Adelsbach & Pfitzmann 2001].

The CSP modelling performed here we treat confidentially properties as safety properties that
can be checked for by showing that certain undesirable events do not happen in any behaviour
of the system. Strictly speaking, confidentiality is neither a trace not a liveness property of the

                                                       
21 Security attributes are interesting for specific system classes with clearly defined “data items” or

messages, to which one can attach these attributes. An attempt to use such attributes consistently in
a fairly large architecture was made in SEMPER [Asokan et al. 2000].
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target system and should be modelled in terms of process equivalence as discussed in
Chapter 3. More details can be found in. for example, [Ryan 2000]. Treating confidentiality as
a safety property does provide a reasonable approximation and is far more tractable from a
modelling point of view than treating it as a fully blown non-interference property, as
discussed in more detail in section 6.3.3.

Likewise, our verification of availability or liveness properties posed no significant theoretical
problems for those cases where the service was assumed to be running in an environment with
timeliness guarantees - for example, that messages are guaranteed to be delivered in a certain
period of time. However, there are several important asynchronous distributed MAFTIA
services that assume a notion of eventual delivery – i.e. that messages “eventually” get
through after a indeterminate period of time – in order to provide availability guarantees.
Verifying such availability guarantees is far more difficult. A general methodology for doing
this in CSP was detailed in Chapter 3 of [Creese & Simmonds 2002].

6.3 Security models
We will regard a security model as a mathematical framework in which security properties,
policies, designs and mechanisms can be precisely formulated and analysed. It will thus be an
abstract model of the security relevant aspects of computation and interaction. Determining
which aspects of a system’s behaviour are security relevant is delicate and error prone.

Historically there have been two main schools of security models: the access control school,
exemplified by the Bell-LaPadula model, and the information flow school, exemplified by the
Goguen-Meseguer notion of non-interference. These are often regarded as competing and
conflicting and a number of secure system developments have followed one school or the
other.  In fact both have a role to play and it is important to understand the relationship
between them. First we present a very brief overview of these styles of model. For more detail
we refer the reader to [Gollmann 1999, McLean 1994, Ryan 2000, Samarati & Vimercati
2000].

6.3.1 Access control models
The first, shall we say, quasi-formal model of computer security was that of Bell-LaPadula
[Bell & LaPadula 1974]. For the purposes of illustration we describe a simplified version of
the model. The key ingredients are:

•  A lattice L of security classifications/clearances,

•  A set of subjects S and a set of objects O,

•  A pair of operations, “read” and “write”,

•  A mapping clear: S Æ L and a mapping class: O Æ L.

A Mandatory Access Control (MAC) Multi-Level Security (MLS) policy in encoded in this
model by a pair of rules:

•  No read up (simple security property): subject sŒS can read object oŒO if and only
if clear(s) ≥ class(o),

•  No write down (*-property): subject sŒS can write to object oŒO if and only if
class(o) ≥ clear(s),

where the ≥ relation is that defined by the lattice. The intuition behind this is that a subject,
typically a person, should only be allowed to read an object, a file say, if their clearance is at
least equal to the classification of the file. The classification of an object is intended to
represent the level of sensitivity of the information it contains. The clearance of a subject
reflects the level of trust bestowed on them. Suppose that we have a simple (linear) lattice:
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Top secret

|

Secret

|

Unclassified

Then a subject with secret clearance may have read access to secret and unclassified data
(secret dominates secret and unclassified) but not top secret. Note that the lattice relation is
reflexive, so points dominate themselves.

The so-called *-property is intended to ensure that information cannot be written down the
lattice. The *-property was actually added in a later version to counter the observation that the
simple security property alone would allow Trojan horses: code inserted at the high level
capable of signalling information down through the lattice. If we assume that the read and
write operations are the only means for information to flow within the system and constitute
one way flows in the intuitive sense then we see that these rules together prevent any
downward flow of information.

More generally, an Access Control Policy (ACP) is a statement of the rules constraining
which privileges are allowed to which subjects, i.e., who may have what accesses to which
system resources under what circumstances. The policy will also lay out the rules constraining
how the allocation of privileges may evolve, for example, how they may be delegated by one
subject to another.

In order to specify and model a general ACP, we need to set up a simple, abstract model of
the system. This will comprise a set of subjects S, which can be thought of as active entities,
e.g., users or their proxies, and a set of objects O, passive processes, e.g., resources (files,
printers, CPU, etc.). We also need a set of privileges P, that can be thought of as access rights,
e.g., read, write, execute, delegate and so on. A simple, static ACP can now be expressed as a
mapping

F: S ¥ O ¥ P Æ B

i.e., a mapping from the triples formed from subjects, objects and privileges to the Booleans.
Thus, given a request for subject S to exercise privilege (access) P over Object O, the ACP
returns True or False.

Such an ACP can equivalently be encoded as an Access Control Matrix (ACM), with subjects
in the rows, objects in the columns and privileges in the entries. We can now represent the
(abstract) security state of the system as matrix whose rows are the subjects and whose
columns are the objects and whose entries are privileges.

More generally it may be necessary to encode more information into the security state. For
example, if the policy involves rules that depend on historical information (e.g. previous
accesses), location or time, then such information will have to be included in the security
state. Thus the security state will be constructed so as to ensure that it embodies sufficient
information for any access control policy decision to be determined.

An ACP can be expressed as a trace property, i.e. a set of sequences of legal accesses. An
ACP thus embodies the enforceable aspects of the security policy [Schneider 2000], where an
enforceable policy is one that could be enforced by an execution monitor. See the discussion
in Section 3.1.3.5.
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Formulating the execution monitor concept in CSP is particularly appealing as we can use
CSP parallel composition to good effect. The CSP parallel operator corresponds to a
rendezvous abstraction of process interaction. Processes have to synchronise on actions they
have in common, i.e. they must execute in lock-step.

Given an arbitrary system S and trace property j with corresponding execution monitor EMj,
the parallel composition S||EMj will automatically satisfy j. In other words, a given trace
property can be enforced by composing a suitable execution monitor in parallel with it.

6.3.2 Information flow models
A number of shortcomings were quickly recognised with the Bell-LaPadula style of model.
Firstly it turns out to be very difficult to identify all information channels in a real system.
Furthermore, many of the terms employed are not given precise let alone formal definitions.
In particular the terms “read” and “write” depend on our intuitive understanding of these
terms. These difficulties quickly found concrete manifestations when it was discovered that
implementations consistent with the Bell-LaPadula model had so called covert channels.
These are implicit information channels not explicitly identified in the model.

Examples of how covert channels might arise stem from the implicit assumption that read and
write operations are one-way. Thus we assume that writing to a file involves only a transfer of
information from the subject to the object, the file. In fact, if we examine the way a write
operation is implemented, we find that there will typically be the possibility of information
flow in the other direction. An edit command might be refused or delayed, for example, and
this could serve to signal from a high object (file) to a low subject (user). In particular the
system might be implemented in such a way that a request from an unclassified user to create
a file that already exists at secret level is rejected. This would provide a means for a secret
user (or Trojan horse installed at the secret level) to signal to the unclassified user: creating a
secret file of an agreed name could convey one bit of information.

This particular problem is easily sidestepped by implementing a file system that uses different
name spaces for files of different classification levels, thus allowing unclassified and secret
files with the same name to co-exist, unaware of each other’s existence. Now, if the
unclassified user requests the creation of a new file that happens to have the same name as an
existing secret file, the file will be created and no information about the existence of the secret
file conveyed. The point is that the flawed implementation is perfectly consistent with the
Bell-LaPadula model.

These considerations led to the proposal of a radically different way of formulating
confidentiality properties, the so-called non-interference approach. This is commonly
attributed to Goguen and Meseguer [Goguen & Meseguer 1982] but the basic ideas go back to
Feiertag and Cohen [Cohen 1977, Feiertag 1980]. The basic intuition of very simple: we want
to formalise the idea that information cannot flow via a system Sys from one process, High
say, to another, Low say. We assume that High and Low have disjoint interfaces with Sys and
that any interactions they may have must be mediated by Sys. We assert that High is non-
interfering with Low via Sys if it is never possible for a change in High’s interaction with Sys
to produce an observable change in Low’s interactions with Sys. Put differently: Low’s
interactions with Sys are independent of High’s. This gives us a way of formalising the idea
that no causal influence can flow from High to Low via Sys.

Giving this deceptively simple intuition a precise formulation turns out to be surprisingly
delicate in the presence of non-determinism. The details are unimportant here, a process
algebraic formulation can be found in [Ryan 2000] for example. What is significant, from the
point of view of this document, is that the property of being non-interfering is not a trace
property. It cannot be formulated as a predicate over traces or, essentially equivalently, over
states. In process algebraic terms, non-interference can be cast as an assertion that different
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instantiations of the system (corresponding to different High behaviours) are indistinguishable
to Low.

This can be expressed formally: if S is non-interfering from High to Low:

" t, t¢Œ t(S) • t ~L t¢ fi AL(S/t) @AL(S/t¢)

t(S) denotes the set of traces of S. ~L is an equivalence relation over traces. Usually two traces
will be deemed equivalent if their projections onto the Low events are equal, but more general
equivalences are possible. AL denotes an appropriate abstraction operator that yields the Low
level view of the system. S/t denotes the system S after it has executed the trace t. Finally @
denotes an appropriate equivalence relation on processes.

This can be understood as follows. Take an arbitrary pair of traces of the system S. If these
are equivalent in terms of the Low level events (but may differ in terms of High events) then
it must be the case that, from the Low point of view, the system after executing t is
indistinguishable from S after executing t¢. Thus, Low’s interactions with the system are
independent of any High activity. As a consequence, Low cannot from his observations of the
system infer anything about the High activity.

Note that the choice of system abstraction AL and process equivalence @ are crucial here.
Indeed, there is still no consensus in the community as to which form of process equivalence
is appropriate. Furthermore, the question of how to characterise the equivalence of processes
is a deep and controversial one in theoretical computer science and is closely related to the
question of what exactly we mean by a “process”. Many forms of equivalence have been
proposed, some denotational in style, some operational, with no agreement as to which is
“correct”.  It is perhaps unsurprising then that the security community has yet to agree the
“correct” definition of confidentiality.

6.3.3 Relationship between the models
Both of these models have a role to play in the development of a secure system. Bell
LaPadula is perhaps best thought of as a framework for expressing security policy, or more
precisely, access control policy. Non-interference by contrast is really a framework to
characterise the absence of information flow and so give a precise, formal definition of the
property of confidentiality.

Characterising the absence of information flow across an interface is a key element in the
analysis of a secure system. However, as we have noted, information flow is not an
enforceable property. That is to say that we cannot take a system and enforce an information
flow property on it by placing it in parallel with an execution monitor. This is a more formal
way of stating the old dictum: security cannot be bolted on as an after-thought.

Nonetheless, the execution monitor concept is a very appealing one: from a modelling stand-
point it gives rise to readily understandable and tractable models. From an implementation
point of view, an EM is readily given a physical embodiment in some form of authorisation
kernel that intercepts all access requests and blocks those that would violate the policy. We
noted in Section 3.1.3.5 that by composing a suitable EM in parallel with an arbitrary system
we can ensure that the resulting, composed system upholds the required access control policy.
This means that the details of the behaviour of the (components of) the system are irrelevant
to the analysis and we need only verify the EM, or its kernel embodiment. This has the great
advantage that such a kernel can typically be a rather small, possibly distributed, component
of the system and so it is more feasible to perform a rigorous verification on it. We still have
to worry about whether the kernel is by-passable but this can be dealt with separately.

To implement an information flow policy, we could proceed by proposing a design and then
perform a thorough analysis to show that the space of all possible executions has the required
characteristics. In practice, this is infeasible. The kinds of system that we are interested in are
typically far too large for such an analysis to be tractable. Besides, we are assuming that we
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can construct a model for the analysis that is faithful to all the security relevant details. For
confidentiality, where every possible observable is a potential source of information to the
adversary, this is really unthinkable. To guarantee that our model is faithful, it would have to
exactly replicate the real artefact and thus would be of no use as a mathematical model. A
further difficulty is that, even if we supposed that our model was accurate, the fielded device
would inevitably evolve. It would, for example, be upgraded and re-configured, parts would
malfunction in unpredictable ways, and so forth.

Access controls, however, are enforceable and quite easy to understand, implement and
verify. In practice therefore, most secure systems have been designed by postulating an
architecture and using access control mechanisms. A post hoc analysis is then performed to
demonstrate that the implementation upholds the information flow requirements. Such
demonstrations are based on a number of assumptions and approximations. For example, the
architecture is assumed known, i.e., that the channels, interfaces and protocols are all
correctly identified and modelled. Recognition that such arguments are highly error prone
lead to the development of covert channels analysis, as a systematic way of identifying all
channels in an architecture [Lampson 1973]. Often it is simple assumed that any covert
channels are of sufficiently low channel capacity to be ignorable.

We see then that there is a tension between these two styles of model: information flow is the
ideal formulation of secrecy but is difficult, arguably impossible, to implement and verify.
Access control, by contrast, can only give an approximation to secrecy but is comparatively
easy to understand, implement and verify. In practice then, the design and analysis of secure
systems is, or rather should be, performed using a mix of the two styles.

In one sense, we can think of information flow (non-interference) models as providing an
underpinning to access control models like Bell-LaPadula. The Bell-LaPadula model depends
heavily on informal intuitions such as the meaning of terms like read and write. In particular,
it is assumed that these constitute one-way information flows. In principle at least, we could
(and should) perform an analysis of the implementation of the read and write operations and
establish that they really are one-way flows. In reality, they almost certainly won’t be: there
will typically be some back-flow to throttle data rates, for example.

6.4 Overview of specification and verification in the MAFTIA
context

So far we have surveyed how the basic concepts of MAFTIA can be formalised, and in
particular where new work was done in MAFTIA with respect to such formalisations. Now
we give a brief general overview of where verification is useful in a MAFTIA context.

6.4.1 By security methods
Ten classes of security methods were identified in Section 3.4; here we discuss how each
relates to verification and assessment work within MAFTIA:

1. Attack prevention (in the human sense) does not relate naturally to the type of rigorous
formalism undertaken in WP6. Although one could well envisage the use of economic,
social and psychological models to aid in the prevention of human attacks, we consider
these outside the scope of our work.

2. Attack prevention (in the technical sense) could be supported by rigorous models that
provide precise foundations for risk analysis. This could be achieved by specifying and
verifying not only the really intended service, but also “services” with a certain maximum
gain for an adversary that the system keeps up under certain weaker failure assumptions,
and by trying to evaluate the investment needed for an adversary to achieve these failures.
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3. Vulnerability prevention is the process by which one attempts to avoid introducing
vulnerabilities during design. Formal, or even semi-formal, specification can help a great
deal in this process since such specifications are less ambiguous than natural language.

4. Intrusion tolerance is the classical area where systems are proven in all the sub-fields of
dependability, e.g., fault-tolerant protocols and cryptography. In particular, fault masking
is accessible to verification, and also classical fault diagnosis techniques. When one can
define a particular class of intrusions, then the detection of that class might be verifiable.
However, since it not feasible to specify all possible types of attacks that the system may
be subjected to, such verification cannot be generalised. This does mean though that we
cannot show that particular systems cannot be compromised under particular assumptions.

5. As for attack prevention, there is no specific verification and assessment work that relates
to attack removal (in the human sense). Instead, assuming that attack forecasting (in the
human sense) has been undertaken, then our formalisms should account for that
forecasting implicitly in their trust models.

6. Attack removal (in the technical sense) can benefit largely from model checking. Once
debugging has identified or confirmed an attack, then the original model can be amended
(usually quite quickly) to incorporate a prospective `fix', then run again to confirm that it
indeed removes the attack.

7. Vulnerability removal is the process of verification and assessment as such. The model-
checking verification technique (where applicable) is particularly useful since it provides
debugging information identifying faults. Model checking can be utilised throughout the
development cycle of MAFTIA to provide a means of fault removal from an early stage,
in addition to a positive verification of the final product. A good example of this can be
found in the modelling of two of the TTCB security services (as detailed in [Adelsbach &
Creese 2003]).

8. As for attack prevention, attack forecasting (in the human sense) would seem to be more
accessible to economic, social and psycological models.

9. Attack forecasting (in the technical sense) and vulnerability forecasting can be undertaken
to some degree by statistical models or fault tree analysis [Welch et al. 2003]. One could
also envisage the use of probabilistic model checking in this area, although this has not
been considered in MAFTIA. In addition if one has in mind specific potential attacks,
then it is possible to inject faults into existing models of the system to see whether it is
indeed vulnerable to that attack.

6.4.2 By system life-cycle
Dependability assessment of an actual system can be structured by the system life cycle, as in
the assurance part of [DIS 15408-1-3], and all phases have to be considered. Verification,
however, concentrates on the design phase. That, in its turn, may go through several phases of
successively detailed designs, which all need assessment.

Specific verification work in MAFTIA concentrates on those design phases where specific
dependability measures are implemented, typically detailed design. High-level design (e.g., an
architecture as such) is typically not detailed enough for formalisation, whereas standard
hardware or software verification techniques for atomic components can be used to verify the
implementation of the detailed design.

6.4.3 By architectural component
An important pre-condition for all component-wise verification is that one can indeed
compose and prove systems using only the specifications of its sub-components, while
preserving the proven properties, when substituting the sub-component’s specifications by
according implementations, which provably fulfil the specifications. Our formalisation of the
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MAFTIA basic concepts includes the proof of such a composition theorem (see Section 2.8 of
[Adelsbach & Pfitzmann 2001], and Section 2.5 of [Adelsbach & Steiner 2002]).
Concentrating now on fault tolerance in the detailed design, the different components of a
system structured according to the MAFTIA frameworks and architecture need different
verification techniques.

In Section 1.3 of [Creese & Simmonds 2002], the reader will find a discussion on
composition (or compose-ability) in the context of automated proofs using CSP. Briefly, in
the context of particular verifications, the components of a modular system can be considered
atomic, “black-box” nodes connected by channels regulated by different CSP processes
depending on the synchrony model. It is discussed how different mechanisms can help us
reason about such modular systems according to node topology. Often it is the case that the
node topologies correspond to a partitioning of a hybrid system into sub-systems according to,
for example, failure assumptions, or underlying synchrony assumptions. Splitting a
distributed system up like this not only makes for more tractable models, it can also help us to
reason about global dependability properties. An example of this is can be found in the CSP
modelling of two TTCB security services (see Chapter 4 of [Adelsbach & Creese 2003]).

6.4.4 By degree of formality
One can distinguish “rigorous” definitions and proofs in the sense of mathematics (where one
can mix natural language and formulas quite freely), and “formal” ones in the sense of being
restricted to a specific language with specific transformation rules.22 The benefits that come
with the restrictions of a formal system are that it enables tool-support, (at least syntax checks,
and at best automatic proofs). We mention the use of less “formal” vulnerability assessments
using fault tree analysis [Welch et al. 2003].

The definitions of basic concepts in MAFTIA are all only rigorous, because we were not
aware of a tool that could have supported the probabilities, polynomial-time restrictions etc.
However, for non-cryptographic protocols, or given suitable abstractions of cryptography
proven in a rigorous way, it might be possible to use standard tools. Hence two main issues of
the verification work in MAFTIA were to work towards such abstractions of cryptography,
and to extend the usage of one such standard tool towards larger systems, as we now describe.

6.5 Novel verification work within MAFTIA
The novel verification work performed within MAFTIA has pursued two strands of research:
the formalisation of basic concepts and new protocols, and the extension of verification
techniques.

6.5.1 Abstractions from cryptography
The goal of this work is to join definition and proof techniques from cryptography with those
of a wider dependability community. A first step towards this is implicit in the general
formalisation of basic concepts in a model that allows cryptographic components to be
included.

Our system models allow us to split reactive systems into two layers: The lower layer is a
cryptographic system whose security can be rigorously proven using standard cryptographic
arguments. To the upper layer it provides an abstract (and typically deterministic) service that
hides all cryptographic details. Relative to this abstract service one can verify the upper layer
using existing formal methods. Since our models allow secure composition, one can conclude

                                                       
22 In the previous sections, we did not make this distinction, e.g., we said “formalize” where a

“rigorous” verbal definition would have sufficed.
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that the overall system is secure if the formally verified upper layer is put on top of a
cryptographically verified lower layer.

The main second step is to define actual abstract specifications of important cryptographic
components. Abstract means in particular that these specifications should no longer be
probabilistic (unless the service itself is probabilistic, e.g., for a coin flipping protocol).

We have defined abstract specifications for two initial examples: secure point-to-point
channels, in both the synchronous and the asynchronous timing model, and certified mail. In
the Trusted Host for secure group key agreement, we provided a normal I/O automata that
could be translated into the formal language of CSP (see [Adelsbach & Creese 2003],
Chapters 2 and 3); we see no theoretical reasons why that particular example could not be
transcribed into a variety of formalisms. A first example, which built upon our abstract
specification of a secure point-to-point channel, implemented secure ordered channels on top
of our specification and can be found in [Backes et al. 2002]. The mechanism that performed
the book keeping of messages was proven secure with the theorem-prover PVS, and the
security of the overall system follows by the composition theorem.

The example of secure point-to-point channels also led to certain methodologies, e.g., for
including tolerable imperfections into a specification. These are specific services to the
adversary that are necessary if one wants the specification to be implementable by efficient
real systems. For example, such systems allow traffic analysis (because one does not typically
want to spend bandwidth to transfer dummy traffic continually), and thus an adversary can
gain some information that honest users would not gain. We hope that the development of
such proof techniques will lead to faster verifications in general.

6.5.2 Model-checking large protocols
Model-checking tools can only be used directly to reason about finite state systems, and
usually only those of particularly small, unrealistic, sizes. The model-checking of core
MAFTIA concepts and particular services has so far required a large amount of very careful
modelling, rather than particularly novel techniques for overcoming size limitations.
Verifications have been obtained for the asynchronous and synchronous contract-signing
protocols, and selected TTCB services.

Data-Independence [Lazic 1999, Lazic & Roscoe 1999] allows us to handle systems
parameterised by types, where we might want to establish correctness independently of the
size of the types.  In MAFTIA there were plenty of possible case studies for data
independence theory (unsurprisingly, as MAFTIA promotes redundancy through replication).
An example was the IBM probabilistic ABBA protocol. For that protocol, we succeeded in
expressing the threshold voting mechanism that is at the heart of ABBA (and several other
related MAFTIA protocols) in a data independent form. That result was reported on in
[Creese & Simmonds 2002].

6.5.3 Synchrony models and availability
As already mentioned in 6.2, selected formalisms of MAFTIA concepts and dependability
concepts were expressed in CSP.   Of particular interest to us were the three synchrony
models and the availability properties. The synchrony modelling was exemplified in the
modelling of the contract signing protocols (synchronous and asynchronous) and selected
TTCB services (hybrid synchrony). These are reported on in [Adelsbach & Pfitzmann 2001],
[Creese & Simmonds 2002] and [Adelsbach & Creese 2003] respectively.

For the modelling of the asynchronous contract signing protocol, we had to develop a
methodology for the verification of availability properties for protocols running over
asynchronous networks with a notion of eventual delivery.
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The modelling of the TTCB services provided us with a good case study into how to model
services running over hybrid networks. We did this by essentially decomposing the system
into subsystems according to the underlying synchrony assumptions. The global dependability
properties were verified by “composing” local properties of the subsystems - these being
verified using FDR. During the verification of the TTCB protocols a productive dialogue
ensued between the protocol author and verifier to resolve ambiguities, and, in the case of the
Local Authentication Service, the verifier was able to suggest minor amendments to that
service that would result in a more fault tolerant service.  For the relatively straightforward
TTCB Local Authentication Service, we could argue that it is data independent in the sense
that the results extrapolate to an arbitrary number of local TTCBs and entities.

6.5.4 Lessons Learnt
During the course of the MAFTIA CSP modelling, the verifiers learnt many lessons on good
modelling practices and the need for good specification of protocols (here “specification” is
used in the sense of original protocol design). Of particular importance is the need for trace-
ability in the sense of correlation between original specification and final model, also dialogue
between the verifiers and protocol authors to resolve ambiguities, for example. These lessons
were put into practice as the project evolved, and they may be documented in a formal report.

6.5.5 Linking the Cryptographic and CSP worlds
One, important, aim of MAFTIA WP6 was to bridge the gap between the cryptographic and
automated (or tool-assisted) worlds. Here “cryptographic” pertains to the rigorous secure
reactive systems theory [Pfitzmann & Waidner 2001], and “automated” pertains to model
checking, specifically using CSP and FDR.

The rigorous secure reactive systems theory is a well-defined mathematical framework for
faithfully modelling cryptographic systems. In that theory, both cryptographic systems are
transcribed as structures - basically probabilistic state-transition machines with specified ports
(user-interface channels). Any structure may be augmented to form a configuration, by
specifying a set of users, H, and an adversary machine, A. Any configuration is run-able in
the sense that it yields a probability space of traces in terms of the inputs/outputs over its
ports, and we may refer to the “view of a system” with respect to the probability space of
traces over the specified ports.

A Trusted Host is a structure, in the above sense, representing the “best possible service” - a
specification of a service suffering tolerable (and possibly unavoidable) imperfections. In the
“real world”, however, any particular implementation of that service will invariably suffer
from more malevolent imperfections - as it will depend, for example, on imperfect
cryptographic primitives, or “lossy” communications mediums.

The question then arises as to how to measure the security of these “real world” systems
against the “best possible service”, when the former, if reliant on imperfect primitives, can
never quite match the latter. In the world of automated verification that is usually a non-
question, because the types of “imperfections” that we are referring to here are usually
abstracted away by Dolev-Yao type assumptions [Dolev & Yao 1983]. In the rigorous secure
reactive systems theory, however, the semantics of the cryptographic primitives is faithfully
preserved, and there is a formal mathematical notion of simulatability – a bisimilar
relationship that defines what it means for a real world system to be “as least as secure as” the
best possible service.

The notion of simulatability has parallels with the notion of refinement in the CSP calculus.
So it was natural to ask whether it would be feasible to use automated checkers, such as FDR,
to prove simulatability relationships. That would be good, because proving simulatability
relationships by hand requires a great deal of human effort, which is, inevitably, open to error.
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However, that goal proved very ambitious. The problem is not specifically one of theory -
there is no reason why configurations in the rigorous secure reactive systems theory cannot
naively be transcribed in CSP or similar calculi. Rather, the problem is more one of
practicalities - in that the state-space of the resulting models would invariably be intractably
large for today’s automatic checkers, and it is our opinion that that will remain the case for the
foreseeable future.

Nevertheless, as a kind of “feasibility study”, we modelled in CSP the Ideal System for Group
Key Establishment that is described in Chapter 2 of [Adelsbach & Creese 2003]. Our aim was
to demonstrate the viability of writing tractable models of the simpler state machines that we
see in the rigorous secure reactive systems theory, and to verify meaningful properties of
those machines that would otherwise have to be done by hand. As such, this work may be
considered complementary to that of Backes, Jacobi and Pfitzmann [Backes et al. 2002], in
which the PVS theorem-prover was used to verify certain non-cryptographic “book-keeping”
mechanisms of a scheme for secure message transmission. Our modelling of the Ideal System
for Group Key Establishment is reported on in detail in Chapter 3 of [Adelsbach & Creese
2003].
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Chapter 7 Conclusion

This deliverable contains four main contributions:

•  A discussion of the nature of security policies, rules and goals, in the context of
security failures and faults, an analysis of attacks, vulnerabilities and intrusions in
terms of the basic dependability concepts of fault, error and failure, and the
identification of ten security methods for dealing with attacks, vulnerabilities and
intrusions

•  A discussion of the relationship between intrusion detection and intrusion tolerance,
and the development of an integrated intrusion detection/tolerance framework for
building intrusion tolerant systems

•  An introduction to the MAFTIA architecture and a discussion of the underlying
models and fault assumptions upon which it is based, including a description of the
various strategies that are being used to build intrusion tolerant components. Three
such strategies are identified, namely “fail-uncontrolled”, “fail-controlled with
distributed trusted components”, and “fail-controlled with local trusted
components”.

•  A brief overview of some of the issues concerning the formalisation of the MAFTIA
conceptual model, a discussion of approaches to formalising security policies, and
an introduction to the methods of validation and assessment that are being used as
fault removal techniques to ensure the security of the protocols that are used to
implement the MAFTIA architecture

Other deliverables provide more detail about MAFTIA’s work on intrusion-tolerant
middleware [Cachin 2001b, Neves & Veríssimo 2001], intrusion-detection systems [Dacier
2002], trusted third parties [Cachin 2002], authorisation services [Abghour et al. 2001,
Abghour et al. 2002], and the work on verification and assessment of secure systems
[Adelsbach & Creese 2003]. The role of this deliverable is to describe the basic concepts of
dependability and intrusion tolerance that underpin all of the MAFTIA work. These concepts
and architectural principles reflect the experience gained from prototyping and validating
selected components of the overall MAFTIA architecture.
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Glossary

This glossary is provided as an aid to reading this document. It should not
be considered independently of the body of the document.

abuse of privilege – see (privilege, abuse of ~).

access control – the prevention of use of a resource by unidentified and/or
unauthorised entities in any other than an authorised manner [ECMA TR/46]; the
determination as to whether a requested access to an information item is to be
granted or denied; see also, authorisation.

accidental – not deliberate

accountability – availability and integrity of some meta-information related to an
operation (e.g., identity of the user realising the operation, time of the operation,
etc.).

alarm (intrusion-detection ~) – a report of an error that may lead to or has led to a
security failure, optionally including diagnostic information about the cause of
the error.

activity – event or a sequence of events within a given context.

anonymisation – process that gives confidence in anonymity.

anonymity – confidentiality of the identity of a person, e.g., who has realised an
operation, or has not realised an operation.

attack – (general sense) a malicious interaction fault, through which an attacker aims to
deliberately violate one or more security properties; an intrusion attempt; (human
sense) a malicious human  interaction fault whereby an attacker aims to
deliberately violate one or more security properties; (technical sense) a malicious
technical interaction fault aiming to exploit a vulnerability as a step towards
achieving the final aim of the attacker

attack agent – malicious logic carrying an attack on behalf of an attacker

attacker – malicious person or organization at the origin of attacks

auditability – availability and integrity of some meta-information related to all
operations.

authentic – of undisputed origin, genuine [OMED 1992].

authentication – process which gives confidence in authenticity.

authenticity – integrity of some information and meta-information; integrity of the
meta-information representing the link between some information and its origin
(e.g., the meta-information relating the claimed identity of a subject to the real
identity of the subject).

authorisation – the granting of access to a security object [ECMA TR/46]; the
determination as to whether a requested operation is to be granted or denied,
according to the security policy; see also, access control.

availability – dependability with respect to the readiness for correct service; measure
of correct service delivery with respect to the alternation between correct service
and incorrect service [Laprie 1992].



Malicious- and Accidental-Fault Tolerance for Internet Applications

100

component (system ~) – another system, which is part of the considered system
[Laprie 1992].

confidentiality – dependability with respect to the non-occurrence of unauthorised
information disclosure.

correct service – see service (correct ~).

coverage – measure of the representativity of the situations to which a system is
submitted during its validation compared to the actual situations it will be
confronted with during its operational life [Laprie 1992].

dependability – ability of a system to deliver a service that can justifiably be trusted.

dependence – the state of being dependent on other support [OMED 1992]; reliance,
trust, confidence [OMED 1992].

dependent – depending, conditional or subordinate [OMED 1992].

error – part of the state of a system that may lead to subsequent failure; manifestation
of a fault in a system [Laprie 1992].

event – a thing that happens or takes place [OMED 1992]; a change in state.

failure – event occurring when the delivered service deviates from correct service; see
also: security failure.

failure model – a fault model defined in terms of the failures of the components of a
system.

failure (security~) – violation of a security goal of the intended security policy.

false negative – the event corresponding to the incorrect decision not to rate an activity
as being erroneous; also called a “miss”.

false positive – the event corresponding to the incorrect decision to rate an activity as
being erroneous; also called a “false alarm”.

fault – adjudged or hypothesised cause of an error; error cause which is intended to be
avoided or tolerated [Laprie 1992]; consequence for a system of the failure of
another system which has interacted or is interacting with the considered system
[Laprie 1992].

fault forecasting – see forecasting (fault ~).

fault model – set of assumptions about the faults that are taken into account during
fault prevention, tolerance, removal or forecasting.

fault prevention – see prevention (fault ~).

fault removal – see removal (fault ~).

fault tolerance – see tolerance (fault ~).

forecasting (fault ~) – how to estimate the present number, the future incidence, and
the likely consequences of fault.s

forecasting (attack ~) – how to estimate the present number, the future incidence, and
the likely consequences of attacks.

forecasting (vulnerabality ~) – how to estimate the present number, the future
incidence, and the likely consequences of vulnerabilities.

identity – representation of a person in a system.

incorrect service – see service (incorrect ~).
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insider – a human user authorised to perform some of a set of specified operations on a
set of specified objects, i.e., a user whose (current) privilege intersects the
considered domain of object-operation pairs.

insider intrusion – see intrusion (insider ~).

intruder – malicious person or organization at the origin of intrusions, i.e., an attacker
that has successfully exploited a vulnerability

integrity – absence of improper state alterations.

intrusion – a malicious, externally-induced fault resulting from an attack that has been
successful in exploiting a vulnerability.

intrusion (insider ~) – an abuse of privilege.

intrusion (outsider ~) – a theft of privilege.

intrusion detection: concerns the set of practices and mechanisms used towards
detecting errors that may lead to security failure, and diagnosing intrusions and
attacks.

intrusion-detection system: an implementation of the practices and mechanisms of
intrusion detection.

logic bomb – malicious logic that remains dormant in the host system till a certain time
or an event occurs, or certain conditions are met, and then deletes files, slows
down or crashes the host system, etc.

malicious – intending or intended to do harm [OMED 1992].

malicious logic – an internal, deliberately malicious fault; malicious logic may by a
logic bomb, a zombie, a Trojan horse, a trapdoor, a virus, a worm, an illegal
sniffer, etc.

misfeasance – the illegal or improper performance of an action in itself lawful [LMED
1976]; an intrusion through the abuse of privilege.

object – information container.

outsider – a human user not authorised to perform any of a set of specified operations
on a set of specified objects, i.e., a user whose (current) privilege does not
intersect the considered domain of object-operation pairs.

outsider intrusion – see (intrusion, outsider ~).

prevention (fault ~) – how to prevent the occurrence or introduction of faults

prevention (attack ~) – how to prevent the occurrence of (human or technical) attacks.

prevention (intrusion ~) – how to prevent the occurrence of intrusions (through attack
prevention, vulnerability prevention and vulnerability removal).

prevention (vulnerability ~) – how to prevent the occurrence or introduction of
vulnerabilities.

privacy – confidentiality of personal information.

privilege – set of rights of a subject.

privilege (abuse of ~) – a misfeasance, i.e., an improper use of authorised operations.

privilege (theft of ~) – an unauthorised increase in privilege, i.e., a change in the
privilege of a user that is not permitted by the system’s security policy.

removal (fault ~) – how to reduce the number or severity of faults.
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removal (attack ~) – how to reduce the number or severity of (human or technical)
attacks

removal (vulnerability ~) – how to reduce the number or severity of vulnerabilities

responsibility – the state of being responsible [OMED 1992].

responsible – obliged to account; being the cause of; accountable for.

rights – a subject has a given right on a specified object if and only if he is authorised
to perform a specified operation on that object; elements of a subject’s privilege.

security – dependability with respect to the prevention of unauthorised access and/or
handling of information [Laprie 1992]; the combination of confidentiality,
integrity and availability.

security failure – see failure (security~).

security policy – description of 1) the security properties which are to be fulfilled by a
computing system; 2) the rules according to which the system security state can
evolve.

service – system behaviour as perceived by a system user.

service (correct ~) – service that implements the system function.

service (incorrect ~) – service that does not implement the system function.

sniffer – a program that monitors network traffic.

state (system ~) – a condition of being with respect to a set of circumstances [Laprie
1992].

subject – active entity in a computer system — a process is a subject, a human user is
also a subject.

system – entity having interacted, interacting or able to interact with other entities
[Laprie 1992]; set of components bound together in order to interact [Laprie
1992].

system function – that for which the system is intended.

system user – see user (system ~).

theft of privilege – see (privilege, theft of ~).

tolerance (fault ~) – how to provide correct service in the presence of faults

tolerance (intrusion ~) – how to provide correct service in the presence of intrusions

trapdoor – malicious logic that provides a means of circumventing access control
mechanisms.

Trojan horse – malicious logic performing an illegitimate action while giving the
impression of being legitimate; the illegitimate action can be the disclosure or
modification of information (attack against confidentiality or integrity) or a logic
bomb.

true negative – the event corresponding to the correct decision not to rate an activity as
being erroneous.

true positive – the event corresponding to the correct decision to rate an activity as
being erroneous.

true negative – the event corresponding to the correct decision of an intrusion-
detection system to rate an observed activity as not being malicious.
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true positive – the event corresponding to an alarm correctly generated by an intrusion-
detection system.

trust – reliance on the truth of a statement etc. without examination [OMED 1992].

trusted – adjective to describe a statement etc. on which trust has been placed.

user (system ~) – another system (physical, human) interacting with the considered
system.

virus – malicious logic that replicates itself and joins another program (system or
application) when it is executed, thereby turning into a Trojan horse; a virus can
carry a logic bomb.

vulnerability – a fault created during development of the system, or during operation,
that could be exploited to create an intrusion.

worm – malicious logic that replicates itself and propagates without the users being
aware of it; a worm can also carry a logic bomb.

zombie – a logic bomb that can be triggered by an attacker in order to mount a
coordinated attack.
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